期刊文献+

Effect of Different Kinetic Factors on the Thermochemistry of Sulfophosphoric Attack Reaction of Natural Phosphate Tunisian by DRC

Effect of Different Kinetic Factors on the Thermochemistry of Sulfophosphoric Attack Reaction of Natural Phosphate Tunisian by DRC
下载PDF
导出
摘要 Mixture of phosphoric and sulfuric acid solutions has been used to investigate the dissolution of natural phosphates (PN) by DRC. The effect of concentration, particle size and stirring speed reaction is examined. Thermochimique properties of each kinetic parameters reaction are determined. It was found that these parameters have a considerable effect on the thermochemical aspect of the attack reaction. It is known that the process of PN sulphophosphoric acid attack leads to the formation of dihydrate (CaSO4.2H2O: DH). The present work shows the precipitation of other residues their formula depends on factors studied. The increase in concentration leads to the formation of hemihydrate (CaSO4v1/2H2O:HH) beside DH for the low values of% H2SO4 due to the solubility of dihydrate on the etching solution and the precipitation of (Ca (H2PO4)2.2H2O) next of DH for low agitation values because of the lack of turbulence between the liquid phase and the solid phase which favors the precipitation of this latter compound. Mixture of phosphoric and sulfuric acid solutions has been used to investigate the dissolution of natural phosphates (PN) by DRC. The effect of concentration, particle size and stirring speed reaction is examined. Thermochimique properties of each kinetic parameters reaction are determined. It was found that these parameters have a considerable effect on the thermochemical aspect of the attack reaction. It is known that the process of PN sulphophosphoric acid attack leads to the formation of dihydrate (CaSO4.2H2O: DH). The present work shows the precipitation of other residues their formula depends on factors studied. The increase in concentration leads to the formation of hemihydrate (CaSO4v1/2H2O:HH) beside DH for the low values of% H2SO4 due to the solubility of dihydrate on the etching solution and the precipitation of (Ca (H2PO4)2.2H2O) next of DH for low agitation values because of the lack of turbulence between the liquid phase and the solid phase which favors the precipitation of this latter compound.
出处 《Advances in Materials Physics and Chemistry》 2018年第11期429-440,共12页 材料物理与化学进展(英文)
关键词 Thermochimique PHOSPHATE Ore Differential REACTION CALORIMETRY Concentration STRING Speed Particle Size Thermochimique Phosphate Ore Differential Reaction Calorimetry Concentration String Speed Particle Size
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部