摘要
Chitin nanofibers (CNFs) processed from second most abundant biomolecule chitin were loaded with gold metallic nanoparticles (Au NPs) to obtained hybrid organic-inorganic composite which was molded in different forms dispersion, flakes, powder, and transparent thin film. First pre-organized Au NPs were prepared in soluble triblock copolymer poly (methyl vinyl ether) (PMVE) by reduction of gold precursor salt (HAuCl43H2O) by NaBH4 then NPs were mixed with diluted CNFs suspension to obtain CNFs-Au NPs composite. CNFs of width 25 - 40 nm were prepared by combination of chemical and mechanical processing in wet acidic condition from 1 wt% crab shell chitin slurry. When polymer stabilized Au NPs blended with CNF suspension, all Au NPs and 56% polymer were found mass transferred from water phase to entangle with more polar moieties of chitin. Composite’s suspension and compressed dried film were characterized by recording digital images, UV-vis, TEM, SEM, and XRD spectroscopies. When 70 m thin non transparent composite film was impregnated with tricyclodecane dimethanol dimethacrylate (TCDDMA) resin and subsequent polymerized with photoinitiator 2-hydroxy-2-methylpropiophenone, the film became transparent due to filling of nanosized CNFs in the cages of the resin.
Chitin nanofibers (CNFs) processed from second most abundant biomolecule chitin were loaded with gold metallic nanoparticles (Au NPs) to obtained hybrid organic-inorganic composite which was molded in different forms dispersion, flakes, powder, and transparent thin film. First pre-organized Au NPs were prepared in soluble triblock copolymer poly (methyl vinyl ether) (PMVE) by reduction of gold precursor salt (HAuCl43H2O) by NaBH4 then NPs were mixed with diluted CNFs suspension to obtain CNFs-Au NPs composite. CNFs of width 25 - 40 nm were prepared by combination of chemical and mechanical processing in wet acidic condition from 1 wt% crab shell chitin slurry. When polymer stabilized Au NPs blended with CNF suspension, all Au NPs and 56% polymer were found mass transferred from water phase to entangle with more polar moieties of chitin. Composite’s suspension and compressed dried film were characterized by recording digital images, UV-vis, TEM, SEM, and XRD spectroscopies. When 70 m thin non transparent composite film was impregnated with tricyclodecane dimethanol dimethacrylate (TCDDMA) resin and subsequent polymerized with photoinitiator 2-hydroxy-2-methylpropiophenone, the film became transparent due to filling of nanosized CNFs in the cages of the resin.