期刊文献+

Kinetics and Thermodynamics of Adsorption Methylene Blue onto Tea Waste/CuFe<sub>2</sub>O<sub>4</sub>Composite 被引量:2

Kinetics and Thermodynamics of Adsorption Methylene Blue onto Tea Waste/CuFe<sub>2</sub>O<sub>4</sub>Composite
下载PDF
导出
摘要 Tea waste/CuFe2O4 (TW/C) composite was prepared by co-precipitation method. The TW and TW/C samples are characterized by FTIR, XRD, SEM and N2 physical adsorption. The results showed that specific surface area of 350 and 570 m2·g?1 for TW and TW/C, respectively. The average pore size of TW/C is ca. 100 nm. Adsorption of methylen blue onto TW/C composite has been studied. Measurements are performed at various contact time, pH and adsorbent dosage. The adsorption kinetics of methylen blue (MB) could be described by the pseudo-second order kinetic model. The adsorption isotherms are described by means of Langmuir and Freundlich isotherms. It was found that the Freundlich model fit better than the Langmuir model. The thermodynamic constants of the adsorption were calculated to predict the nature of adsorption. The values of thermodynamic parameters indicate that a spontaneous and endothermic process was occurred. Tea waste/CuFe2O4 (TW/C) composite was prepared by co-precipitation method. The TW and TW/C samples are characterized by FTIR, XRD, SEM and N2 physical adsorption. The results showed that specific surface area of 350 and 570 m2·g?1 for TW and TW/C, respectively. The average pore size of TW/C is ca. 100 nm. Adsorption of methylen blue onto TW/C composite has been studied. Measurements are performed at various contact time, pH and adsorbent dosage. The adsorption kinetics of methylen blue (MB) could be described by the pseudo-second order kinetic model. The adsorption isotherms are described by means of Langmuir and Freundlich isotherms. It was found that the Freundlich model fit better than the Langmuir model. The thermodynamic constants of the adsorption were calculated to predict the nature of adsorption. The values of thermodynamic parameters indicate that a spontaneous and endothermic process was occurred.
机构地区 Chemistry Department
出处 《American Journal of Analytical Chemistry》 2013年第7期1-7,共7页 美国分析化学(英文)
关键词 Adsorption CuFe2O4 COMPOSITE Kinetic Methylen Blue (MB) TEA WASTE THERMODYNAMIC Adsorption CuFe2O4 Composite Kinetic Methylen Blue (MB) Tea Waste Thermodynamic
  • 相关文献

同被引文献31

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部