期刊文献+

FTIR-ATR and Multivariate Calibration for the Prediction of Biodiesel Concentration in Petrodiesel Blends

FTIR-ATR and Multivariate Calibration for the Prediction of Biodiesel Concentration in Petrodiesel Blends
下载PDF
导出
摘要 The increasing use of petrodiesel-biodiesel fuel blends throughout the world requires fast, economic and efficient analytical techniques that can be used for the quality control of these fuels. In this work, we developed an analytical method for determining the concentration of African palm biodiesel in blends with petrodiesel;the method is based on infrared spectroscopy (FTIR-ATR). To build a prediction model, nineteen petrodiesel-biodiesel blends were prepared in triplicate with biodiesel concentrations for 0%-100% by weight. The blends were analyzed using Fourier transform infrared spectroscopy, the spectral fingerprint data were used to build a prediction model through PLS regression. The optimal number of principal components (PCs), the standard error of calibration (SEC), the standard validation error (SEV), the correlation coefficient of calibration (r Cal) and the validation correlation coefficient (r Val) were used to validate the predictive ability of the model. The results show that the model obtained in this work has a good ability for determining the concentration of African palm biodiesel in petrodiesel-biodiesel blends. The increasing use of petrodiesel-biodiesel fuel blends throughout the world requires fast, economic and efficient analytical techniques that can be used for the quality control of these fuels. In this work, we developed an analytical method for determining the concentration of African palm biodiesel in blends with petrodiesel;the method is based on infrared spectroscopy (FTIR-ATR). To build a prediction model, nineteen petrodiesel-biodiesel blends were prepared in triplicate with biodiesel concentrations for 0%-100% by weight. The blends were analyzed using Fourier transform infrared spectroscopy, the spectral fingerprint data were used to build a prediction model through PLS regression. The optimal number of principal components (PCs), the standard error of calibration (SEC), the standard validation error (SEV), the correlation coefficient of calibration (r Cal) and the validation correlation coefficient (r Val) were used to validate the predictive ability of the model. The results show that the model obtained in this work has a good ability for determining the concentration of African palm biodiesel in petrodiesel-biodiesel blends.
出处 《American Journal of Analytical Chemistry》 2013年第7期343-347,共5页 美国分析化学(英文)
关键词 AFRICAN PALM FTIR-ATR CHEMOMETRIC Tools Partial Least SQUARES Regression Petrodiesel-Biodiesel BLENDS African Palm FTIR-ATR Chemometric Tools Partial Least Squares Regression Petrodiesel-Biodiesel Blends
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部