期刊文献+

Some Hybrid Systems of Chiral Schiff Base Zn(II) Complexes and Photochromic Spiropyrans for Environmental Ion Sensing

Some Hybrid Systems of Chiral Schiff Base Zn(II) Complexes and Photochromic Spiropyrans for Environmental Ion Sensing
下载PDF
导出
摘要 This is a review article including our recent results and some previous photo functional hybrid system having potential applications for environmental ion sensing. We have prepared several new and known chiral Schiff base Zn(II) complexes and measured (and also calculated) absorption and fluorescence spectra for sole complexes. After assembling hybrid systems with 1,3,3-trime- thylindolino-6’-nitrobenzopyrylospiran (SP) in methanol solutions, we measured spectral changes before and after alternate irradiation of UV and visible light. Intensity of fluorescence spectra for pale yellow Zn(II) complexes (λem = 450 nm, λex = 270 and 360 nm) was quenched by colorless SP (λem = 533 nm, λex = 612 nm). After UV light irradiation to form purple merocyanine (MC), photoisomerization resulted in changes of the intensity of absorption spectra as well as fluorescence spectra. Thus the hybrid systems could successfully act as molecular logic circuit by input (excitation by light) and output (intensity of fluorescence peaks). Moreover, we investigated concentration dependence of doped Zn(II) and Cu(II) ions to confirm quenching of intensity of fluorescence peaks by Zn(II) and Cu(II) MC complexes for metal ion sensing in solutions. This is a review article including our recent results and some previous photo functional hybrid system having potential applications for environmental ion sensing. We have prepared several new and known chiral Schiff base Zn(II) complexes and measured (and also calculated) absorption and fluorescence spectra for sole complexes. After assembling hybrid systems with 1,3,3-trime- thylindolino-6’-nitrobenzopyrylospiran (SP) in methanol solutions, we measured spectral changes before and after alternate irradiation of UV and visible light. Intensity of fluorescence spectra for pale yellow Zn(II) complexes (λem = 450 nm, λex = 270 and 360 nm) was quenched by colorless SP (λem = 533 nm, λex = 612 nm). After UV light irradiation to form purple merocyanine (MC), photoisomerization resulted in changes of the intensity of absorption spectra as well as fluorescence spectra. Thus the hybrid systems could successfully act as molecular logic circuit by input (excitation by light) and output (intensity of fluorescence peaks). Moreover, we investigated concentration dependence of doped Zn(II) and Cu(II) ions to confirm quenching of intensity of fluorescence peaks by Zn(II) and Cu(II) MC complexes for metal ion sensing in solutions.
出处 《American Journal of Analytical Chemistry》 2014年第12期751-765,共15页 美国分析化学(英文)
关键词 Zinc(II) COMPLEXES SPIROPYRAN Chirality Fluorescence ION SENSING Zinc(II) Complexes Spiropyran Chirality Fluorescence Ion Sensing
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部