期刊文献+

Atomic epn(ep) Spin Models and Spectral Lines

Atomic epn(ep) Spin Models and Spectral Lines
下载PDF
导出
摘要 We confirmed that how many kinds of epn spins the atoms have by calculating heat capacity of metals according to energy levels in the previous reference. To know more the spin models of epn of hydrogen and helium are imagined and their line spectra are counted. And the explanation of interference is discussed. Gas atoms make line spectra by optical interference. Solid atoms make them by exciting the lowest epns of their cluster first. They all make s, p energy orbit. One axis is composed of two epns. 1s or 2s of atoms except for lithium generally makes the symmetric axis. When each energy level is filled up by epns, these are symmetrically paired first. The atoms which fit the number of line spectra correctly by optical interference are hydrogen and helium. By counting the number of alignments of epns spins within the cluster, the atoms which fit the number of line spectra correctly are lithium, beryllium and phosphorus. The number of line spectra of the rest atoms which we have counted approaches the experimented numbers approximately, not correctly. We confirmed that how many kinds of epn spins the atoms have by calculating heat capacity of metals according to energy levels in the previous reference. To know more the spin models of epn of hydrogen and helium are imagined and their line spectra are counted. And the explanation of interference is discussed. Gas atoms make line spectra by optical interference. Solid atoms make them by exciting the lowest epns of their cluster first. They all make s, p energy orbit. One axis is composed of two epns. 1s or 2s of atoms except for lithium generally makes the symmetric axis. When each energy level is filled up by epns, these are symmetrically paired first. The atoms which fit the number of line spectra correctly by optical interference are hydrogen and helium. By counting the number of alignments of epns spins within the cluster, the atoms which fit the number of line spectra correctly are lithium, beryllium and phosphorus. The number of line spectra of the rest atoms which we have counted approaches the experimented numbers approximately, not correctly.
机构地区 Kwongmyoung-Si Emeritus
出处 《American Journal of Analytical Chemistry》 2015年第13期1030-1037,共8页 美国分析化学(英文)
关键词 ATOMIC Model ATOMIC CLUSTER SPECTRAL LINES RESONANCE Atomic Model Atomic Cluster Spectral Lines Resonance
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部