期刊文献+

Thermal Decomposition and a Kinetic Study of Poly(Para-Substituted Styrene)s

Thermal Decomposition and a Kinetic Study of Poly(Para-Substituted Styrene)s
下载PDF
导出
摘要 The thermal decompositions of polystyrene (PS), poly(p-methyl styrene) (PMS), poly(p-bromo styrene) (PBrS), and poly(p-chloro styrene) (PClS) were investigated through thermogravimetric analysis (TGA). For this aim, Flynn-Wall-Ozawa method was applied to derivative thermogravimetric (DTG) curves. Continuous distribution kinetics was employed with a stoichiometric kernel to determine the rate coefficients for decomposition reactions. TGA data for the polymers were investigated by nonlinear fitting procedures that yielded activation energies and frequency factors for the combined chemical reactions. The reaction order values of PS derivatives are just about 1 in the nonisothermal decomposition process. Ea values for PS, PMS, and PClS increase with % conversion individually as they decrease in the order of PS/PMS/PClS which is consistent with the molecular weight increase. On the other hand, PBrS has the highest activation energy. Also its activation energy decreases with the % conversion. Thus it is suggested that PBrS degrades with somehow different mechanism. The thermal decompositions of polystyrene (PS), poly(p-methyl styrene) (PMS), poly(p-bromo styrene) (PBrS), and poly(p-chloro styrene) (PClS) were investigated through thermogravimetric analysis (TGA). For this aim, Flynn-Wall-Ozawa method was applied to derivative thermogravimetric (DTG) curves. Continuous distribution kinetics was employed with a stoichiometric kernel to determine the rate coefficients for decomposition reactions. TGA data for the polymers were investigated by nonlinear fitting procedures that yielded activation energies and frequency factors for the combined chemical reactions. The reaction order values of PS derivatives are just about 1 in the nonisothermal decomposition process. Ea values for PS, PMS, and PClS increase with % conversion individually as they decrease in the order of PS/PMS/PClS which is consistent with the molecular weight increase. On the other hand, PBrS has the highest activation energy. Also its activation energy decreases with the % conversion. Thus it is suggested that PBrS degrades with somehow different mechanism.
作者 Ayşegül Şenocak Cemil Alkan Ahmet Karadağ Ayşegül Şenocak;Cemil Alkan;Ahmet Karadağ(Chemistry Department, Art and Science Faculty, Gaziosmanpasa University, Tokat, Turkey)
机构地区 Chemistry Department
出处 《American Journal of Analytical Chemistry》 2016年第3期246-253,共8页 美国分析化学(英文)
关键词 POLYSTYRENES Thermogravimetric Analysis Kinetic Analysis Polystyrenes Thermogravimetric Analysis Kinetic Analysis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部