摘要
Capillary zone electrophoresis (CZE) is a sensitive and rapid technique for determining traces of inorganic cations in water samples. CZE with indirect UV-diode array detection (CZE-DAD) was utilized to identify several inorganic cations in natural, potable, and wastewater samples. A pH 4.35 background electrolyte system was employed and consisted of 15 mM imidazole, 8 mM malonic acid, 2 mM 18-crown-6 ether as complexing agents, 10% v/v methanol as an organic modifier with indirect absorbance reference at 214 nm. The CZE method involved electromigration injection at 5 kV for 5 s, a separation voltage of 20 kV at 25℃, and a detection wavelength of 280 nm. Six main cations (ammonium , potassium K+, calcium Ca2+, sodium Na+, magnesium Mg2+, and lead Pb2+) were tested, and all but lead, were detected in the water samples at concentrations between 0.03 and 755 ppm with a detection limit ranging between 0.023 and 0.084 ppm. The successful evaluation of the proposed methodology allowed us to reliably detect and separate six metal ions in different water samples without any pretreatment. All water samples were collected from Northern New York towns and the Raquette River water system, the third longest river in New York State and the largest watershed of the central and western Adirondacks.
Capillary zone electrophoresis (CZE) is a sensitive and rapid technique for determining traces of inorganic cations in water samples. CZE with indirect UV-diode array detection (CZE-DAD) was utilized to identify several inorganic cations in natural, potable, and wastewater samples. A pH 4.35 background electrolyte system was employed and consisted of 15 mM imidazole, 8 mM malonic acid, 2 mM 18-crown-6 ether as complexing agents, 10% v/v methanol as an organic modifier with indirect absorbance reference at 214 nm. The CZE method involved electromigration injection at 5 kV for 5 s, a separation voltage of 20 kV at 25℃, and a detection wavelength of 280 nm. Six main cations (ammonium , potassium K+, calcium Ca2+, sodium Na+, magnesium Mg2+, and lead Pb2+) were tested, and all but lead, were detected in the water samples at concentrations between 0.03 and 755 ppm with a detection limit ranging between 0.023 and 0.084 ppm. The successful evaluation of the proposed methodology allowed us to reliably detect and separate six metal ions in different water samples without any pretreatment. All water samples were collected from Northern New York towns and the Raquette River water system, the third longest river in New York State and the largest watershed of the central and western Adirondacks.