期刊文献+

Efficient Removal of Reactive Orange 107 Dye from Aqueous Media by Shrimp Shell Derived Chitosan Functionalized Magnetic Nanoparticles

Efficient Removal of Reactive Orange 107 Dye from Aqueous Media by Shrimp Shell Derived Chitosan Functionalized Magnetic Nanoparticles
下载PDF
导出
摘要 In present work chitosan functionalized magnetic nanoparticles (CMNPs) were successfully prepared and investigated for the removal of Reactive Orange 107 dye (RO 107) from water. The chitosan was extracted from shrimp shells (Penaeus merguiensis) and was characterized by solubility test and fourier transform infrared spectroscopy (FTIR). Degree of deacetylation of chitosan was examined by 1H-NMR and potentiometric titration method. Thereafter, the chitosan was used for synthesis of CMNPs. The synthesized CMNPs were characterized by FTIR, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), thermal gravimetric analysis (TGA) and atomic force microscopy (AFM). Effects of various variables such as contact time, pH, stirring speed, adsorbent dosage, temperature, and concentration of electrolyte on extraction efficiency were evaluated. Freundlich isotherm model fits better that shows the removal of RO 107 with CMNPs by multilayer adsorption behaviour. Furthermore, kinetic study showed that adsorption process followed pseudo-second order kinetic model regulated by chemisorption. Thermodynamic analysis explained that adsorption of RO 107 onto CMNPs was endothermic as well as spontaneous. The developed CNMPs were applied to environmental remediation of spiked RO 107 treated waste water samples with 96.20% removal potential, hence, offered an effective sorbent for removal of RO 107 contaminated water samples. In present work chitosan functionalized magnetic nanoparticles (CMNPs) were successfully prepared and investigated for the removal of Reactive Orange 107 dye (RO 107) from water. The chitosan was extracted from shrimp shells (Penaeus merguiensis) and was characterized by solubility test and fourier transform infrared spectroscopy (FTIR). Degree of deacetylation of chitosan was examined by 1H-NMR and potentiometric titration method. Thereafter, the chitosan was used for synthesis of CMNPs. The synthesized CMNPs were characterized by FTIR, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), thermal gravimetric analysis (TGA) and atomic force microscopy (AFM). Effects of various variables such as contact time, pH, stirring speed, adsorbent dosage, temperature, and concentration of electrolyte on extraction efficiency were evaluated. Freundlich isotherm model fits better that shows the removal of RO 107 with CMNPs by multilayer adsorption behaviour. Furthermore, kinetic study showed that adsorption process followed pseudo-second order kinetic model regulated by chemisorption. Thermodynamic analysis explained that adsorption of RO 107 onto CMNPs was endothermic as well as spontaneous. The developed CNMPs were applied to environmental remediation of spiked RO 107 treated waste water samples with 96.20% removal potential, hence, offered an effective sorbent for removal of RO 107 contaminated water samples.
出处 《American Journal of Analytical Chemistry》 2018年第12期633-653,共21页 美国分析化学(英文)
关键词 Magnetic Nanoparticles Adsorption CHITOSAN FUNCTIONALIZATION ANIONIC DYES Magnetic Nanoparticles Adsorption Chitosan Functionalization Anionic Dyes
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部