摘要
The present study is based on the investigation of performance of C,N-bipyrazole receptor grafted onto silica surface (SG2P) of adsorption Arsenic (AS) from aqueous solutions. The effects of operating parameters that include pH, contact time, concentration of As and dosage of adsorbent on adsorption were accomplished. The results clearly showed that the removal efficiency of As was decreased with an increasing of As concentration, pH, and temperature, while it was continuously increasing with time and adsorbent dose. Moreover, the removal efficiency of Cr (VI) adsorption was 75% corresponding to pH;temperature (°C), initial concentration (ppm) and weight of dose (g) were 6, 25, and 0.04 respectively at 24 hours. The adsorption capacity of the synthesized sorbent (SG2P) for arsenic at pH Escherichia coli (ATCC25922) and Staphylococcus aureus (ATCC25932) were as a reference strains, while, the SG2P was able to inhibit growth only at high concentration (MIC = 1.5625 mg/ml).
The present study is based on the investigation of performance of C,N-bipyrazole receptor grafted onto silica surface (SG2P) of adsorption Arsenic (AS) from aqueous solutions. The effects of operating parameters that include pH, contact time, concentration of As and dosage of adsorbent on adsorption were accomplished. The results clearly showed that the removal efficiency of As was decreased with an increasing of As concentration, pH, and temperature, while it was continuously increasing with time and adsorbent dose. Moreover, the removal efficiency of Cr (VI) adsorption was 75% corresponding to pH;temperature (°C), initial concentration (ppm) and weight of dose (g) were 6, 25, and 0.04 respectively at 24 hours. The adsorption capacity of the synthesized sorbent (SG2P) for arsenic at pH Escherichia coli (ATCC25922) and Staphylococcus aureus (ATCC25932) were as a reference strains, while, the SG2P was able to inhibit growth only at high concentration (MIC = 1.5625 mg/ml).