期刊文献+

Rapid Method for Greywater Treatment and Their Potential Reuse in Agriculture

Rapid Method for Greywater Treatment and Their Potential Reuse in Agriculture
下载PDF
导出
摘要 Greywater, a type of wastewater, may be hazardous to human health and ecosystems. Greywater is a large fraction of wastewater that needs adequate attention for remediation and reuse in the agricultural sector so that a part of the water problem can be sorted out. This study aims to develop a rapid method for greywater treatment and reuse in agriculture. A microfilter consisting of sand, clay, organo-clay, charcoal, and biochar was designed and tested for greywater treatments. Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN), Total Dissolved Salts (TDS), Electric Conductivity (EC), turbidity and pH values were measured before and after using the microfilter. Results showed tremendous removal efficiency of BOD, COD, TKN, by using the developed microfilter. The microfilter was also effective in treating and placing pH, EC and TDS in the acceptable range for suitable agricultural use. Using the treated greywater for irrigation in corn, tomato seedlings showed increased growth compared with the control group (plants irrigated with tap water). This microfilter treatment was economical, safe, easy to handle and easily applicable. These encouraging results suggest the application of this method in many countries for solving the water scarcity problem. Greywater, a type of wastewater, may be hazardous to human health and ecosystems. Greywater is a large fraction of wastewater that needs adequate attention for remediation and reuse in the agricultural sector so that a part of the water problem can be sorted out. This study aims to develop a rapid method for greywater treatment and reuse in agriculture. A microfilter consisting of sand, clay, organo-clay, charcoal, and biochar was designed and tested for greywater treatments. Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN), Total Dissolved Salts (TDS), Electric Conductivity (EC), turbidity and pH values were measured before and after using the microfilter. Results showed tremendous removal efficiency of BOD, COD, TKN, by using the developed microfilter. The microfilter was also effective in treating and placing pH, EC and TDS in the acceptable range for suitable agricultural use. Using the treated greywater for irrigation in corn, tomato seedlings showed increased growth compared with the control group (plants irrigated with tap water). This microfilter treatment was economical, safe, easy to handle and easily applicable. These encouraging results suggest the application of this method in many countries for solving the water scarcity problem.
作者 Eman Mahmoud El Qrenawi Ibrahim EL-Nahhal Mohamad R. Al-Agha Yasser El-Nahhal Eman Mahmoud El Qrenawi;Ibrahim EL-Nahhal;Mohamad R. Al-Agha;Yasser El-Nahhal(Department of Environmental Science, Faculty of Science, The Islamic University-Gaza, Gaza, Palestine;Université de Toulon, Aix-Marseille Université, La Garde, France)
出处 《American Journal of Analytical Chemistry》 2022年第2期20-38,共19页 美国分析化学(英文)
关键词 GREYWATER Microfilter Sea Sand ORGANOCLAY BIOCHAR Charcoal SAWDUST Greywater Microfilter Sea Sand Organoclay Biochar Charcoal Sawdust
  • 相关文献

参考文献7

二级参考文献4

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部