摘要
Focusing our DFT calculations on the carboxylic acid drugs such as ibuprofen drug (IBF), it has been concluded that the anions of these types of drugs have the spontaneous electron donor character to all the carcinogenic cells of electron deficiency in their nuclei. Due to the spontaneity of electron transfer of anions, it has been found clinically that ibuprofen drug cures cancers of colon, protostate, lung and breast. The breast cancer treatment of Matthew Gdovin group in two hours by injection of ethanolic solution of nitrobenzaldehyde in the breast tumor in presence of uv-irradiation has been studied from TD-DFT point of view;the excited states of these molecules in presence of uv-irradiation act as electron donors to the cancerous cells to compensate the electron deficiency. Finally, it has been concluded that the electron transfer is the main cause of the breast cancer treatment which is the most aggressive type of cancers and is one of the hardest to treat.
Focusing our DFT calculations on the carboxylic acid drugs such as ibuprofen drug (IBF), it has been concluded that the anions of these types of drugs have the spontaneous electron donor character to all the carcinogenic cells of electron deficiency in their nuclei. Due to the spontaneity of electron transfer of anions, it has been found clinically that ibuprofen drug cures cancers of colon, protostate, lung and breast. The breast cancer treatment of Matthew Gdovin group in two hours by injection of ethanolic solution of nitrobenzaldehyde in the breast tumor in presence of uv-irradiation has been studied from TD-DFT point of view;the excited states of these molecules in presence of uv-irradiation act as electron donors to the cancerous cells to compensate the electron deficiency. Finally, it has been concluded that the electron transfer is the main cause of the breast cancer treatment which is the most aggressive type of cancers and is one of the hardest to treat.