摘要
Non-enzymatic glycation of proteins has been implicated as an important cause of the complications associated with diabetes and Alzheimer disease. It is well known that glycation involves the reactivity of, primarily, the ε-amino group of the lysines present in the protein. The immediate chemical environment of an amino group modulates the glycation reaction. In this work, several model helical peptides for protein glycation has been studied by resorting to QM:MM calculations through the ONIOM methodology. Some Conceptual DFT descriptors have been calculated that allowed the comparison of the chemical reactivity between the different model peptides in terms of the position of the Lys group and other spatially proximate amino acid residues.
Non-enzymatic glycation of proteins has been implicated as an important cause of the complications associated with diabetes and Alzheimer disease. It is well known that glycation involves the reactivity of, primarily, the ε-amino group of the lysines present in the protein. The immediate chemical environment of an amino group modulates the glycation reaction. In this work, several model helical peptides for protein glycation has been studied by resorting to QM:MM calculations through the ONIOM methodology. Some Conceptual DFT descriptors have been calculated that allowed the comparison of the chemical reactivity between the different model peptides in terms of the position of the Lys group and other spatially proximate amino acid residues.