期刊文献+

Computational Analysis of a Series of Chlorinated Chalcone Derivatives

Computational Analysis of a Series of Chlorinated Chalcone Derivatives
下载PDF
导出
摘要 A systematic conceptual density functional theory (DFT) analysis was performed on a series of chlorinated chalcones to study the effect of electron distribution on antimicrobial activity. In our previous work, a series of 16 chlorinated chalcones were synthesized to determine the antimicrobial effects of varying the location of the halogen substituent on each aromatic ring of the chalcone. Herein is reported a DFT investigation of those 16 chalcones and a comparison of quantum chemical properties to their antimicrobial activity. DFT global chemical reactivity descriptors (chemical hardness/softness, chemical potential/electronegativity, and electrophilicity) and local reactivity descriptors (Fukui functions and dual descriptor) were calculated for all compounds using Spartan’18 software. All calculations were carried out at the B3LYP/6-31G* level of theory. Reactivity analysis of the Fukui dual descriptor calculations reveals sites of nucleophilic and electrophilic attack. These in-silico results provide a foundation for further synthetic optimization of the chalcone skeleton to serve as novel antimicrobial agents. A systematic conceptual density functional theory (DFT) analysis was performed on a series of chlorinated chalcones to study the effect of electron distribution on antimicrobial activity. In our previous work, a series of 16 chlorinated chalcones were synthesized to determine the antimicrobial effects of varying the location of the halogen substituent on each aromatic ring of the chalcone. Herein is reported a DFT investigation of those 16 chalcones and a comparison of quantum chemical properties to their antimicrobial activity. DFT global chemical reactivity descriptors (chemical hardness/softness, chemical potential/electronegativity, and electrophilicity) and local reactivity descriptors (Fukui functions and dual descriptor) were calculated for all compounds using Spartan’18 software. All calculations were carried out at the B3LYP/6-31G* level of theory. Reactivity analysis of the Fukui dual descriptor calculations reveals sites of nucleophilic and electrophilic attack. These in-silico results provide a foundation for further synthetic optimization of the chalcone skeleton to serve as novel antimicrobial agents.
机构地区 Mathematics
出处 《Computational Chemistry》 2019年第4期106-120,共15页 计算化学(英文)
关键词 DENSITY FUNCTIONAL THEORY COMPUTATIONAL Analysis IN-SILICO CHALCONE Density Functional Theory Computational Analysis In-Silico Chalcone
  • 相关文献

参考文献2

二级参考文献2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部