摘要
Two pure hexagonal phases of titanium dioxide, anatase and rutile, were grown on c-cut Al2O3 substrates via pulsed-laser deposition by changing only the growth and annealing conditions, but without changing the substrate, target, or working gas. Purity of each phase was confirmed by x-ray diffraction, the quality of each film was studied using atomic force microscopy and scanning electron microscopy, and the interface between each substrate and film was studied using x-ray photoelectron spectroscopy. A binding layer of Ti2O3 was found to explain anatase growth under the very large lattice mismatch conditions.
Two pure hexagonal phases of titanium dioxide, anatase and rutile, were grown on c-cut Al2O3 substrates via pulsed-laser deposition by changing only the growth and annealing conditions, but without changing the substrate, target, or working gas. Purity of each phase was confirmed by x-ray diffraction, the quality of each film was studied using atomic force microscopy and scanning electron microscopy, and the interface between each substrate and film was studied using x-ray photoelectron spectroscopy. A binding layer of Ti2O3 was found to explain anatase growth under the very large lattice mismatch conditions.