摘要
In this paper we investigate the influence of the next-nearest-neighbor coupling on the spectrum of plasmon excitations in graphene. The nearest-neighbor tight-binding model was previously considered to calculate the plasmon spectrum in graphene [1]. We extend these results to the next-nearest-neighbor tight-binding model. As in the calculation of the nearest-neighbor model, our approach is based on the numerical calculation of the dielectric function and the loss function. We compare the plasmon spectrum of the two models and discuss the differences in the dispersion.
In this paper we investigate the influence of the next-nearest-neighbor coupling on the spectrum of plasmon excitations in graphene. The nearest-neighbor tight-binding model was previously considered to calculate the plasmon spectrum in graphene [1]. We extend these results to the next-nearest-neighbor tight-binding model. As in the calculation of the nearest-neighbor model, our approach is based on the numerical calculation of the dielectric function and the loss function. We compare the plasmon spectrum of the two models and discuss the differences in the dispersion.