期刊文献+

CO<sub>2</sub>Absorption Performance of “Dry Matter” Prepared with Amino Acid-Based Ionic Liquids

CO<sub>2</sub>Absorption Performance of “Dry Matter” Prepared with Amino Acid-Based Ionic Liquids
下载PDF
导出
摘要 Dry Matter (DM) is a powdery substance which is composed of micro droplets and surrounding hydrophobic silica nanoparticles. Because of the much larger surface area than that of the corresponding bulk liquid, DM, which contains amino-functionalized ionic liquids (ILs), is a promising CO2 absorption material provided with quick absorption speed. In the present study, we successfully prepared powdery DMs by utilizing aqueous solutions of amino acid-based ILs (tetraethylammonium glycine [N2222][Gly], and tetraethylammonium alanine [N2222][Ala]). Although a DM with lysine-based IL (N2222) [Lys]) was also prepared, only a soufflé-like material was obtained. We measured CO2 absorption performance for the DMs to find that the mass-base absorption ability (mass-base A.A.) (CO2 mol/DM kg) and the mol-base one (CO2 mol/IL mol) of [N2222][Lys] were ca. two times of [N2222][Gly] and [N2222][Ala], while the absorption speed of the former was inferior to the latter two, i.e., ca.15 min vs. 5 min for 90% absorption. In order to improve the mass-base A.A. of [N2222][Gly], we used 10% of aqueous poly(allylamine) (PAlAm) solution instead of water. The resultant mass-base A.A. proved to be significantly larger (1.9) than either of those of the respective single component systems (1.1 and 0.75 for the bulk IL and aq. PAlAm, respectively), and comparable to the A.A. (1.6 - 2.5) of 20% - 30% monoethanolamine solution which is commonly used in industrial application. Dry Matter (DM) is a powdery substance which is composed of micro droplets and surrounding hydrophobic silica nanoparticles. Because of the much larger surface area than that of the corresponding bulk liquid, DM, which contains amino-functionalized ionic liquids (ILs), is a promising CO2 absorption material provided with quick absorption speed. In the present study, we successfully prepared powdery DMs by utilizing aqueous solutions of amino acid-based ILs (tetraethylammonium glycine [N2222][Gly], and tetraethylammonium alanine [N2222][Ala]). Although a DM with lysine-based IL (N2222) [Lys]) was also prepared, only a soufflé-like material was obtained. We measured CO2 absorption performance for the DMs to find that the mass-base absorption ability (mass-base A.A.) (CO2 mol/DM kg) and the mol-base one (CO2 mol/IL mol) of [N2222][Lys] were ca. two times of [N2222][Gly] and [N2222][Ala], while the absorption speed of the former was inferior to the latter two, i.e., ca.15 min vs. 5 min for 90% absorption. In order to improve the mass-base A.A. of [N2222][Gly], we used 10% of aqueous poly(allylamine) (PAlAm) solution instead of water. The resultant mass-base A.A. proved to be significantly larger (1.9) than either of those of the respective single component systems (1.1 and 0.75 for the bulk IL and aq. PAlAm, respectively), and comparable to the A.A. (1.6 - 2.5) of 20% - 30% monoethanolamine solution which is commonly used in industrial application.
出处 《Green and Sustainable Chemistry》 2017年第3期203-216,共14页 绿色与可持续化学(英文)
关键词 Dry Matter Ionic Liquid CO2 ABSORPTION AMINO Acid POLYALLYLAMINE Dry Matter Ionic Liquid CO2 Absorption Amino Acid Polyallylamine
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部