期刊文献+

On Sustainable Production of CaCO3 via Monohydrocalcite—A Carbon Capture and Mineralisation Product from Waste Brines

On Sustainable Production of CaCO3 via Monohydrocalcite—A Carbon Capture and Mineralisation Product from Waste Brines
下载PDF
导出
摘要 This study investigated the conversion of monohydrocalcite (MHC) to anhydrous calcium carbonate. The primary material, MHC, was produced from waste brines containing Ca and Mg ions, reacted with sodium carbonate, which may serve in the carbon capture and mineralisation approach. Two different approaches to the conversion were studied: 1) the conversion of MHC conversion to anhydrous calcium carbonates in air (under ambient conditions);2) the identification of conversion conditions which could be adapted for potential industrial application. The former focused on the effects of the synthesis system conditions of the primary material on the aragonite conversion process and the resulting aragonite morphology, whereas the latter covered the factors that accelerate conversion and influence the resulting morphology. The paper also discusses instances where MHC converts to the more stable polymorph, calcite. It was found that conditions leading to the polymorphic and morphological selection of converted minerals were temperature and humidity dependant. This study investigated the conversion of monohydrocalcite (MHC) to anhydrous calcium carbonate. The primary material, MHC, was produced from waste brines containing Ca and Mg ions, reacted with sodium carbonate, which may serve in the carbon capture and mineralisation approach. Two different approaches to the conversion were studied: 1) the conversion of MHC conversion to anhydrous calcium carbonates in air (under ambient conditions);2) the identification of conversion conditions which could be adapted for potential industrial application. The former focused on the effects of the synthesis system conditions of the primary material on the aragonite conversion process and the resulting aragonite morphology, whereas the latter covered the factors that accelerate conversion and influence the resulting morphology. The paper also discusses instances where MHC converts to the more stable polymorph, calcite. It was found that conditions leading to the polymorphic and morphological selection of converted minerals were temperature and humidity dependant.
作者 Roneta Chaliulina Roneta Chaliulina(Gulf Organisation for Research and Development, Doha, Qatar)
出处 《Green and Sustainable Chemistry》 CAS 2023年第1期34-61,共28页 绿色与可持续化学(英文)
关键词 MORPHOLOGY Morphological Stability Calcium Carbonates MINERALS SALTS Morphology Morphological Stability Calcium Carbonates Minerals Salts
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部