期刊文献+

Study on the Effect of Carboxyl Terminated Butadiene Acrylonitrile (CTBN) Copolymer Concentration on the Decomposition Kinetics Parameters of Blends of Glycidyl Epoxy and Non-Glycidyl Epoxy Resin

Study on the Effect of Carboxyl Terminated Butadiene Acrylonitrile (CTBN) Copolymer Concentration on the Decomposition Kinetics Parameters of Blends of Glycidyl Epoxy and Non-Glycidyl Epoxy Resin
下载PDF
导出
摘要 The degradation of the epoxy system was studied for the prepared six blend samples with the incorporation of 0 wt% - 25 wt% carboxyl terminated butadiene acrylonitrile (CTBN) copolymer, on a dynamic basis using Thermo gravimetric analysis (TGA) technique under a nitrogen atmosphere. The blends were prepared by physical mixing and were cured with diamine. The degradation of each sample followed second-order degradation kinetics, which was calculated by Coats-Redfern equation using best-fit analysis. This was further confirmed by linear regression analysis. The validity of data was checked by t-test statistical analysis. From this value of reaction order, activation energy (E), and pre-exponential factor (Z) were calculated. It was found that the activation energy increased with the addition of liquid elastomer. The degradation of the epoxy system was studied for the prepared six blend samples with the incorporation of 0 wt% - 25 wt% carboxyl terminated butadiene acrylonitrile (CTBN) copolymer, on a dynamic basis using Thermo gravimetric analysis (TGA) technique under a nitrogen atmosphere. The blends were prepared by physical mixing and were cured with diamine. The degradation of each sample followed second-order degradation kinetics, which was calculated by Coats-Redfern equation using best-fit analysis. This was further confirmed by linear regression analysis. The validity of data was checked by t-test statistical analysis. From this value of reaction order, activation energy (E), and pre-exponential factor (Z) were calculated. It was found that the activation energy increased with the addition of liquid elastomer.
机构地区 不详
出处 《International Journal of Organic Chemistry》 2011年第3期105-112,共8页 有机化学国际期刊(英文)
关键词 DIGLYCIDYL Ether of Bis-Phenol-A Cycloaliphatic EPOXY Resin CARBOXYL Terminated BUTADIENE Acrylonotrile (CTBN) COPOLYMER Thermogravimetric Analysis (TGA) Degradation Kinetics Diglycidyl Ether of Bis-Phenol-A Cycloaliphatic Epoxy Resin Carboxyl Terminated Butadiene Acrylonotrile (CTBN) Copolymer Thermogravimetric Analysis (TGA) Degradation Kinetics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部