期刊文献+

An Ion-Pair HPLC Method for Simultaneous Determination of Exogenous Phosphocreatine and Its Metabolite Creatine and Related ATP in Rabbit Plasma and RBC: Application to a Pharmacokinetic Study

An Ion-Pair HPLC Method for Simultaneous Determination of Exogenous Phosphocreatine and Its Metabolite Creatine and Related ATP in Rabbit Plasma and RBC: Application to a Pharmacokinetic Study
下载PDF
导出
摘要 A specific, precise and accurate ion-pair HPLC-UV method has been developed and validated for simultaneous determination of phosphocreatine (PCr), and its metabolite creatine (Cr) as well as related ATP in plasma and red blood cell (RBC) of rabbits. After addition of TMP as IS, the samples were deproteinized with 6% PCA. The analytes were separated on a Kromasil C18 column using a tertiary gradient mobile phase composed of buffer A (0.2% KH2PO4 + 0.08% tetrabutyl ammonium hydrogen sulphate, pH 3.0), buffer B (buffer A adjusted to pH 7.5 with 1 mol/L NaOH) and MeOH. Detection wavelengths were set at 210 nm for PCr and Cr and 260 nm for ATP and TMP. Some blank samples were initially run for baseline subtraction. The linear detection responses were obtained for PCr concentration over a range of 10 - 7500 mg/ml (plasma) and 5 - 2500 mg/ml (RBC) and for both Cr and ATP concentrations of 10 - 1500 mg/ml (plasma) and 5 - 750 mg/ml (RBC) (r > 0.99). The QC samples of 3 analytes showed intra-day and inter-day precisions (RSD) of - 107%. The method was successfully used to simultaneously determine plasma and RBC concentrations of the 3 analytes and to study pharmacokinetics after iv administration of PCr to rabbits. A specific, precise and accurate ion-pair HPLC-UV method has been developed and validated for simultaneous determination of phosphocreatine (PCr), and its metabolite creatine (Cr) as well as related ATP in plasma and red blood cell (RBC) of rabbits. After addition of TMP as IS, the samples were deproteinized with 6% PCA. The analytes were separated on a Kromasil C18 column using a tertiary gradient mobile phase composed of buffer A (0.2% KH2PO4 + 0.08% tetrabutyl ammonium hydrogen sulphate, pH 3.0), buffer B (buffer A adjusted to pH 7.5 with 1 mol/L NaOH) and MeOH. Detection wavelengths were set at 210 nm for PCr and Cr and 260 nm for ATP and TMP. Some blank samples were initially run for baseline subtraction. The linear detection responses were obtained for PCr concentration over a range of 10 - 7500 mg/ml (plasma) and 5 - 2500 mg/ml (RBC) and for both Cr and ATP concentrations of 10 - 1500 mg/ml (plasma) and 5 - 750 mg/ml (RBC) (r > 0.99). The QC samples of 3 analytes showed intra-day and inter-day precisions (RSD) of - 107%. The method was successfully used to simultaneously determine plasma and RBC concentrations of the 3 analytes and to study pharmacokinetics after iv administration of PCr to rabbits.
出处 《Journal of Analytical Sciences, Methods and Instrumentation》 2013年第3期17-23,共7页 分析科学方法和仪器期刊(英文)
关键词 ION-PAIR HPLC PHOSPHOCREATINE CREATINE ATP Plasma RBC Pharmacokinetics Rabbit Ion-Pair HPLC Phosphocreatine Creatine ATP Plasma RBC Pharmacokinetics Rabbit
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部