期刊文献+

Experimental Investigation of Effects of Electric Operating Parameters on Pulsed Corona Discharges in Humid Air at Atmospheric Pressure

Experimental Investigation of Effects of Electric Operating Parameters on Pulsed Corona Discharges in Humid Air at Atmospheric Pressure
下载PDF
导出
摘要 The present work is devoted to electrical and optical study of a point-plane atmospheric pressure corona discharge reactor in humid air powered by pulsed high voltage supply. The corona current and the injected energy are analyzed as a function of several parameters such as applied voltage and humidity rate. Then, investigations based on emission spectroscopy analysis were used in UV range (from 200 nm to about 400 nm). The main observed excited species were the second positive (SPS), the first negative (FNS) systems and OH(A-X) rotational bands. The latter band was used to simulate the rotational temperature (Tr), whereas the N2+ (FNS) band was used to determine the vibrational temperature (Tv). The electron temperature (Te ) is determined from the ratio of line intensities of the spectral bands of both N2+ FNS at 391.4 nm and N2SPS at 394.4 nm. The rotational, vibrational and electronic temperatures are analyzed as a function of above parameters (applied voltage, frequency and hygrometry rate) near the anodic tip. As well we study the axial variation of electronic temperature for a fixed applied voltage at 6.4 kV, frequency at 10 kHz and 100% of humidity. It is found that the rotational, vibrational and electronic temperatures increased with increasing applied voltage, frequency and humidity rate. The increase of rate hygrometry for an inter-electrode distance fixed at 10 mm causes an increase in both the amplitude of the corona current discharge and the energy injected in corona discharge. This is indicative of more intense reactive plasma while increasing hygrometry rate. The present work is devoted to electrical and optical study of a point-plane atmospheric pressure corona discharge reactor in humid air powered by pulsed high voltage supply. The corona current and the injected energy are analyzed as a function of several parameters such as applied voltage and humidity rate. Then, investigations based on emission spectroscopy analysis were used in UV range (from 200 nm to about 400 nm). The main observed excited species were the second positive (SPS), the first negative (FNS) systems and OH(A-X) rotational bands. The latter band was used to simulate the rotational temperature (Tr), whereas the N2+ (FNS) band was used to determine the vibrational temperature (Tv). The electron temperature (Te ) is determined from the ratio of line intensities of the spectral bands of both N2+ FNS at 391.4 nm and N2SPS at 394.4 nm. The rotational, vibrational and electronic temperatures are analyzed as a function of above parameters (applied voltage, frequency and hygrometry rate) near the anodic tip. As well we study the axial variation of electronic temperature for a fixed applied voltage at 6.4 kV, frequency at 10 kHz and 100% of humidity. It is found that the rotational, vibrational and electronic temperatures increased with increasing applied voltage, frequency and humidity rate. The increase of rate hygrometry for an inter-electrode distance fixed at 10 mm causes an increase in both the amplitude of the corona current discharge and the energy injected in corona discharge. This is indicative of more intense reactive plasma while increasing hygrometry rate.
出处 《Journal of Analytical Sciences, Methods and Instrumentation》 2018年第4期49-64,共16页 分析科学方法和仪器期刊(英文)
关键词 CORONA DISCHARGE ATMOSPHERIC Pressure Optical Emission Spectroscopy PULSED High Voltage Humidity Corona Discharge Atmospheric Pressure Optical Emission Spectroscopy Pulsed High Voltage Humidity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部