期刊文献+

Water—A Key Substance to Comprehension of Stimuli-Responsive Hydrated Reticular Systems

Water—A Key Substance to Comprehension of Stimuli-Responsive Hydrated Reticular Systems
下载PDF
导出
摘要 Thermo-responsive hydrated macro-, micro- and submicro-reticular systems (TRHRS), particularly polymers forming hydrogels or similar networks, have attracted extensive interest because comprise biomaterials, smart or intelligent materials. Phase transition temperature (LCST or UCST, i.e. low or upper critical solution temperature, respectively) at about the TRHRS exhibiting a unique hydration-dehydration change is a typical characteristic. The characterization and division of the TRHRS are described followed by explanation of their behaviour. The presented original explanation is based on merely combination of basic thermodynamical state of individual useful macromolecule chains (long-chain or coil) with inter- and intra-mutual action of attractive and repulsive intramolecular hydration forces among them being strongly dependent upon temperature. Acquainted with this piece of knowledge, a theoretical concept of really biological systems movement, e.g. muscle tissues or artificial muscle etc., can be formulated. Thermo-responsive hydrated macro-, micro- and submicro-reticular systems (TRHRS), particularly polymers forming hydrogels or similar networks, have attracted extensive interest because comprise biomaterials, smart or intelligent materials. Phase transition temperature (LCST or UCST, i.e. low or upper critical solution temperature, respectively) at about the TRHRS exhibiting a unique hydration-dehydration change is a typical characteristic. The characterization and division of the TRHRS are described followed by explanation of their behaviour. The presented original explanation is based on merely combination of basic thermodynamical state of individual useful macromolecule chains (long-chain or coil) with inter- and intra-mutual action of attractive and repulsive intramolecular hydration forces among them being strongly dependent upon temperature. Acquainted with this piece of knowledge, a theoretical concept of really biological systems movement, e.g. muscle tissues or artificial muscle etc., can be formulated.
机构地区 Department of Wood
出处 《Journal of Biomaterials and Nanobiotechnology》 2010年第1期17-30,共14页 生物材料与纳米技术(英文)
关键词 Thermally RESPONSIVE Materials HYDROGELS HYDRATION Forces Volume Phase Transition Thermally Responsive Materials Hydrogels Hydration Forces Volume Phase Transition
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部