期刊文献+

A New Nano-Platform for Drug Release via Nanotubular Aluminum Oxide 被引量:1

A New Nano-Platform for Drug Release via Nanotubular Aluminum Oxide
下载PDF
导出
摘要 Nanotubular materials have many favorable properties for drug delivery. We present here a pioneering study of controlled release of a model drug, amoxicillin, from the internal nanopore structure of self-ordered, periodically spaced-apart aluminum oxide with an innovative, nanotubular geometry. This aluminum oxide nanotube geometry has not yet been revealed for biological applications, thus we have selected this oxide nanotube structure and demonstrated its ability as a drug carrier. Controlled, sustained release was achieved for over 5 weeks. The release kinetics from the nanotube layer was thoroughly characterized and it was determined that the amount of drug released was proportional to the square root of time. This type of controlled release and longevity from the nanotube layer has potential for therapeutic surface coatings on medical implants. Furthermore, this type of geometry has many features that are advantageous and biologically relevant for enhancing tissue biointegration. Nanotubular materials have many favorable properties for drug delivery. We present here a pioneering study of controlled release of a model drug, amoxicillin, from the internal nanopore structure of self-ordered, periodically spaced-apart aluminum oxide with an innovative, nanotubular geometry. This aluminum oxide nanotube geometry has not yet been revealed for biological applications, thus we have selected this oxide nanotube structure and demonstrated its ability as a drug carrier. Controlled, sustained release was achieved for over 5 weeks. The release kinetics from the nanotube layer was thoroughly characterized and it was determined that the amount of drug released was proportional to the square root of time. This type of controlled release and longevity from the nanotube layer has potential for therapeutic surface coatings on medical implants. Furthermore, this type of geometry has many features that are advantageous and biologically relevant for enhancing tissue biointegration.
机构地区 不详
出处 《Journal of Biomaterials and Nanobiotechnology》 2011年第3期226-233,共8页 生物材料与纳米技术(英文)
关键词 AAO NANOTUBE ANTIBIOTICS DRUG RELEASE IMPLANT surface AAO nanotube antibiotics drug release implant surface
  • 相关文献

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部