期刊文献+

A Novel Synthesis Route to Produce Boron Nitride Nanotubes for Bioapplications 被引量:2

A Novel Synthesis Route to Produce Boron Nitride Nanotubes for Bioapplications
下载PDF
导出
摘要 Nanostructures of boron nitride have attracted a great deal of interest due to their potential applications that comprise a broad range of topics, including biomedical technology, since it presents good chemical stability and suggests good biological inertia. This paper reports a facile and effective synthesis based on CVD process with new conditions to produce boron nitride nanotubes in higher amount using boron powder, ammonium nitrate and hematite as catalysts in tubular furnace, without using extreme conditions. The characterization of the material was carried out by Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). From the results, it was possible to verify the production of a hexagonal BN nanotube filled with Fe nanoparticles. It was possible to understand the reactions involved in synthesis process, and also confirm the formation of hexagonal boron nitride nanotubes with iron nanoparticles as catalysts. Depending on the final use, samples need to be purified to analyze their unique properties in some bioapplications. In the other hand, sometimes BNNTs containing Fe nanoparticles have potential for use in therapeutic drug, gene and radionuclide delivery, and radio frequency methods for the catabolism of tumors via hyperthermia. In this sense, some application-related studies on BNNTs such as biocompatibility tests have also been investigated in both pure and BN nanotube filled with Fe. Nanostructures of boron nitride have attracted a great deal of interest due to their potential applications that comprise a broad range of topics, including biomedical technology, since it presents good chemical stability and suggests good biological inertia. This paper reports a facile and effective synthesis based on CVD process with new conditions to produce boron nitride nanotubes in higher amount using boron powder, ammonium nitrate and hematite as catalysts in tubular furnace, without using extreme conditions. The characterization of the material was carried out by Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). From the results, it was possible to verify the production of a hexagonal BN nanotube filled with Fe nanoparticles. It was possible to understand the reactions involved in synthesis process, and also confirm the formation of hexagonal boron nitride nanotubes with iron nanoparticles as catalysts. Depending on the final use, samples need to be purified to analyze their unique properties in some bioapplications. In the other hand, sometimes BNNTs containing Fe nanoparticles have potential for use in therapeutic drug, gene and radionuclide delivery, and radio frequency methods for the catabolism of tumors via hyperthermia. In this sense, some application-related studies on BNNTs such as biocompatibility tests have also been investigated in both pure and BN nanotube filled with Fe.
机构地区 不详
出处 《Journal of Biomaterials and Nanobiotechnology》 2011年第4期426-434,共9页 生物材料与纳米技术(英文)
关键词 BORON NITRIDE NANOTUBES BIOCOMPATIBILITY TESTING Bioapplications Boron nitride Nanotubes Biocompatibility Testing Bioapplications
  • 相关文献

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部