摘要
For this investigation conventional polyamide 6 with monomodal molecular mass distribution, and the newly developed bimodal one were used. Conventional polyamide 6 was used as a reference material in order to emphasize prospects of using bimodal material for medical applications from the point of view of sterilization resistance and improved creep behavior. Time-dependent mechanical properties of testing samples were characterized by torsional creep measurements in non-sterilized state and after sterilization with three different techniques: with autoclave, ethylene oxide, and hydrogen peroxide plasma. Results show that the two materials exhibit pronounced difference in morphology and consequently, mechanical properties. Both of them were not significantly affected by any of used sterilization techniques. However, bimodal material, originally being noticeably more time-stable in comparison to monomodal one, retains these preferences also post sterilization.
For this investigation conventional polyamide 6 with monomodal molecular mass distribution, and the newly developed bimodal one were used. Conventional polyamide 6 was used as a reference material in order to emphasize prospects of using bimodal material for medical applications from the point of view of sterilization resistance and improved creep behavior. Time-dependent mechanical properties of testing samples were characterized by torsional creep measurements in non-sterilized state and after sterilization with three different techniques: with autoclave, ethylene oxide, and hydrogen peroxide plasma. Results show that the two materials exhibit pronounced difference in morphology and consequently, mechanical properties. Both of them were not significantly affected by any of used sterilization techniques. However, bimodal material, originally being noticeably more time-stable in comparison to monomodal one, retains these preferences also post sterilization.