摘要
Binary and ternary blends of poly(lactic acid) (PLA), polystyrene (PS) and acrylonitrile-butadiene-styrene (ABS) were prepared using a one-step extrusion process. Rheological and mechanical properties of the prepared blends were determined. Rheological properties were studied using a capillary rheometer, shear rate, shear stress, non-Newtonian index, shear viscosity and flow activation energy were determined. Mechanical properties were studied in term of tensile properties, stress at break, strain at break, and Young’s modulus were determined. The effect of the composition on the rheological and mechanical properties was investigated. The results show that the ternary blend exhibits shear-thinning behavior over the range of the studied shear rates where the true shear viscosity of the blend decreases with increasing true shear rate, also it was found that the true viscosity of the blend decreases with increasing ABS content. The mechanical results showed that, in the most cases, the stress at break and the Young’s modulus improved by the addition of ABS.
Binary and ternary blends of poly(lactic acid) (PLA), polystyrene (PS) and acrylonitrile-butadiene-styrene (ABS) were prepared using a one-step extrusion process. Rheological and mechanical properties of the prepared blends were determined. Rheological properties were studied using a capillary rheometer, shear rate, shear stress, non-Newtonian index, shear viscosity and flow activation energy were determined. Mechanical properties were studied in term of tensile properties, stress at break, strain at break, and Young’s modulus were determined. The effect of the composition on the rheological and mechanical properties was investigated. The results show that the ternary blend exhibits shear-thinning behavior over the range of the studied shear rates where the true shear viscosity of the blend decreases with increasing true shear rate, also it was found that the true viscosity of the blend decreases with increasing ABS content. The mechanical results showed that, in the most cases, the stress at break and the Young’s modulus improved by the addition of ABS.