期刊文献+

Antimicrobial Activity of Minocycline-Loaded Genipin-Crosslinked Nano-Fibrous Chitosan Mats for Guided Tissue Regeneration 被引量:3

Antimicrobial Activity of Minocycline-Loaded Genipin-Crosslinked Nano-Fibrous Chitosan Mats for Guided Tissue Regeneration
下载PDF
导出
摘要 Antimicrobial delivery has been advocated for guided tissue regeneration (GTR) or guided bone regeneration (GBR) therapies involving patients with aggressive or unresolved periodontitis/peri-implantitis. Electrospun chitosan membranes demonstrate several advantages over traditional GTR barrier membranes because they stimulate healing, mimic the topology of the extracellular matrix, and allow for diffusion of nutrients and wastes into/out of the graft site, and were shown to stimulate bone formation in a rabbit calvarial criticalsize defect model. Previously, we have shown improvements in mechanical properties and degradation kinetics by crosslinking electrospun membranes with 5 mM or 10 mM genipin. We have also demonstrated the ability of elecrospun chitosan membranes to inhibit lippopolysaccharide (LPS)-induced monocyte activation. In this study, minocycline was incorporated into the chitosan membrane by passive absorption at 5 or 10 mg/mL. The minocycline-loaded membranes and control membranes (carrier only) were tested against Porphyromonas gingivalis (P. gingivalis) by repeated zone of inhibition (ZOI) measurements. Testing showed that uncrosslinked and genipin-crosslinked membranes have similar capacity to absorb aqueous solutions (swelling ratio 1.7 - 2.2). Minocycline loading resulted in bacterial inhibition for up to 8 days from crosslinked membranes (with 11 mm initial ZOI) whereas uncrosslinked membranes loaded with minocycline only inhibited bacteria for 4 days (with 8 mm initial ZOI). These in vitro results suggest that genipin-crosslinked electrospun chitosan membranes loaded with minocycline may be able to reduce early bacterial contamination of GTR graft sites. Antimicrobial delivery has been advocated for guided tissue regeneration (GTR) or guided bone regeneration (GBR) therapies involving patients with aggressive or unresolved periodontitis/peri-implantitis. Electrospun chitosan membranes demonstrate several advantages over traditional GTR barrier membranes because they stimulate healing, mimic the topology of the extracellular matrix, and allow for diffusion of nutrients and wastes into/out of the graft site, and were shown to stimulate bone formation in a rabbit calvarial criticalsize defect model. Previously, we have shown improvements in mechanical properties and degradation kinetics by crosslinking electrospun membranes with 5 mM or 10 mM genipin. We have also demonstrated the ability of elecrospun chitosan membranes to inhibit lippopolysaccharide (LPS)-induced monocyte activation. In this study, minocycline was incorporated into the chitosan membrane by passive absorption at 5 or 10 mg/mL. The minocycline-loaded membranes and control membranes (carrier only) were tested against Porphyromonas gingivalis (P. gingivalis) by repeated zone of inhibition (ZOI) measurements. Testing showed that uncrosslinked and genipin-crosslinked membranes have similar capacity to absorb aqueous solutions (swelling ratio 1.7 - 2.2). Minocycline loading resulted in bacterial inhibition for up to 8 days from crosslinked membranes (with 11 mm initial ZOI) whereas uncrosslinked membranes loaded with minocycline only inhibited bacteria for 4 days (with 8 mm initial ZOI). These in vitro results suggest that genipin-crosslinked electrospun chitosan membranes loaded with minocycline may be able to reduce early bacterial contamination of GTR graft sites.
出处 《Journal of Biomaterials and Nanobiotechnology》 2012年第4期528-532,共5页 生物材料与纳米技术(英文)
关键词 CHITOSAN Nanofiber GENIPIN MINOCYCLINE Guided Tissue Regeneration Chitosan Nanofiber Genipin Minocycline Guided Tissue Regeneration
  • 相关文献

同被引文献17

引证文献3

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部