期刊文献+

Effect of Drying Processes on the Texture of Silica Gels

Effect of Drying Processes on the Texture of Silica Gels
下载PDF
导出
摘要 Peculiar xerogels and aerogels constituted by a silica network, made of spherical fully dense silica particles having the same size, are investigated by adsorption of nitrogen at 77.4 K. Comparison of sorption data between materials dried via different methods, gentle drying at room temperature, alcohol supercritical drying and CO2 supercritical drying, shows that the specific surface area is associated to the particle sizes and necks established between them during drying and not to the sample density. The dissolution-redeposition of silica, which occurs in the alcohol supercritical drying process, induces a decrease of specific surface area and consequently an increase in the mechanical properties comparatively to CO2 supercritical drying. Investigating pore volume measurements as a function of dwell time, which is the interval of time allowing a pressure change of 0.01%, we corroborate that for compliant materials the full volume can not be detected because of capillary stresses. So the time required to perform correct measurements of the pore volume decreases with sample bulk density increase and elastic properties increase. All these experiments qualitatively corroborate the theory proposed previously. Peculiar xerogels and aerogels constituted by a silica network, made of spherical fully dense silica particles having the same size, are investigated by adsorption of nitrogen at 77.4 K. Comparison of sorption data between materials dried via different methods, gentle drying at room temperature, alcohol supercritical drying and CO2 supercritical drying, shows that the specific surface area is associated to the particle sizes and necks established between them during drying and not to the sample density. The dissolution-redeposition of silica, which occurs in the alcohol supercritical drying process, induces a decrease of specific surface area and consequently an increase in the mechanical properties comparatively to CO2 supercritical drying. Investigating pore volume measurements as a function of dwell time, which is the interval of time allowing a pressure change of 0.01%, we corroborate that for compliant materials the full volume can not be detected because of capillary stresses. So the time required to perform correct measurements of the pore volume decreases with sample bulk density increase and elastic properties increase. All these experiments qualitatively corroborate the theory proposed previously.
机构地区 GES Laboratoire AIGM
出处 《Journal of Biomaterials and Nanobiotechnology》 2013年第1期17-21,共5页 生物材料与纳米技术(英文)
关键词 Nitrogen SORPTION PORE Volume AEROGEL ALCOHOL SUPERCRITICAL DRYING CO2 SUPERCRITICAL DRYING Nitrogen Sorption Pore Volume Aerogel Alcohol Supercritical Drying CO2 Supercritical Drying
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部