期刊文献+

Surface Modification of Titanium Plate with Anodic Oxidation and Its Application in Bone Growth

Surface Modification of Titanium Plate with Anodic Oxidation and Its Application in Bone Growth
下载PDF
导出
摘要 Using implants for dental applications are well-accepted procedures as one of the solutions for periodontal defect repair. Suitable design and materials, their reaction with the surrounding hard tissues and interfacial biomechanical properties are still considered to be the primary criteria which need to be addressed. The purpose of present study was to evaluate the bone repair around pure titanium implants and porous surface using anodic oxidation technique, after their insertion in tibiae of rats (n = 15). Five animals received pure titanium-surface implants in tibia, 5 rough-surface implants (TiO2/Ti) in tibia and last five acted as control group. The interfacial integrity and compositional variation along the interface were studied using scanning electron microscope (SEM) with energy dispersive analysis of X-ray (EDX) and histopathology after 2 months. The rats were sacrificed 8 weeks after surgery and fragments of the tibiae containing the implants were submitted to histological analyses to evaluate new bone formation at the implant-bone interface as well as the tibiae were radio graphed. The SEM-EDX results confirmed the initial stability for the Ti implant, but the regeneration of new bone formation was faster in the case of TiO2/Ti implant, and hence could be used for faster healing. The results of the histological analysis showed that osseointegration occurred for both types of implants with similar quality of bone tissue. In conclusion, the porous-surface implants contributed to the osseointegration because they provide a larger contact area with surface roughness at implant-bone interface can help into the formation of physico-chemical bondage with the surrounding hard tissues. Using implants for dental applications are well-accepted procedures as one of the solutions for periodontal defect repair. Suitable design and materials, their reaction with the surrounding hard tissues and interfacial biomechanical properties are still considered to be the primary criteria which need to be addressed. The purpose of present study was to evaluate the bone repair around pure titanium implants and porous surface using anodic oxidation technique, after their insertion in tibiae of rats (n = 15). Five animals received pure titanium-surface implants in tibia, 5 rough-surface implants (TiO2/Ti) in tibia and last five acted as control group. The interfacial integrity and compositional variation along the interface were studied using scanning electron microscope (SEM) with energy dispersive analysis of X-ray (EDX) and histopathology after 2 months. The rats were sacrificed 8 weeks after surgery and fragments of the tibiae containing the implants were submitted to histological analyses to evaluate new bone formation at the implant-bone interface as well as the tibiae were radio graphed. The SEM-EDX results confirmed the initial stability for the Ti implant, but the regeneration of new bone formation was faster in the case of TiO2/Ti implant, and hence could be used for faster healing. The results of the histological analysis showed that osseointegration occurred for both types of implants with similar quality of bone tissue. In conclusion, the porous-surface implants contributed to the osseointegration because they provide a larger contact area with surface roughness at implant-bone interface can help into the formation of physico-chemical bondage with the surrounding hard tissues.
出处 《Journal of Biomaterials and Nanobiotechnology》 2013年第1期74-83,共10页 生物材料与纳米技术(英文)
关键词 Anodic OXIDATION Treatment Electron DIFFRACTION X-Ray TITANIUM TITANIUM OXIDE HISTOLOGY Anodic Oxidation Treatment Electron Diffraction X-Ray Titanium Titanium Oxide Histology
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部