期刊文献+

Natural ECM-Bacterial Cellulose Wound Healing—Dubai Study 被引量:1

Natural ECM-Bacterial Cellulose Wound Healing—Dubai Study
下载PDF
导出
摘要 Bacterial cellulose (BC) can be used in wide area of applied scientific, especially for tissue regeneration and regenerative medicine, lately, bacterial cellulose mats are used in the treatment of skin conditions such as burns and ulcers, because of the morphology of fibrous biopolymers serving as a support for cell proliferation, its pores allow gas exchange between the organism and the environment. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization, cell support and Natural Extracellular Matrix (ECM) Scaffolds. In this scope, Natural ECM is the ideal biological scaffold since it contains all the components of the tissue. The development of mimicking biomaterials and hybrid biomaterial can further advance directed cellular differentiation without specific induction. The extracellular matrix (ECM) contains several signals that are received by cell surface receptors and contribute to cell adhesion and cell fate which control cellular activities such as proliferation, migration and differentiation. As such, regenerative medicine studies often rely on mimicking the natural ECM to promote the formation of new tissue by host cells, and characterization of natural ECM components is vital for the development of new biomimetic approaches. In this work, the bacterial cellulose fermentation process is modified by the addition of vegetal stem cell to the culture medium and natural materials before the bacteria are inoculated. In vivo behavior using natural ECM for regenerative medicine is presented. Bacterial cellulose (BC) can be used in wide area of applied scientific, especially for tissue regeneration and regenerative medicine, lately, bacterial cellulose mats are used in the treatment of skin conditions such as burns and ulcers, because of the morphology of fibrous biopolymers serving as a support for cell proliferation, its pores allow gas exchange between the organism and the environment. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization, cell support and Natural Extracellular Matrix (ECM) Scaffolds. In this scope, Natural ECM is the ideal biological scaffold since it contains all the components of the tissue. The development of mimicking biomaterials and hybrid biomaterial can further advance directed cellular differentiation without specific induction. The extracellular matrix (ECM) contains several signals that are received by cell surface receptors and contribute to cell adhesion and cell fate which control cellular activities such as proliferation, migration and differentiation. As such, regenerative medicine studies often rely on mimicking the natural ECM to promote the formation of new tissue by host cells, and characterization of natural ECM components is vital for the development of new biomimetic approaches. In this work, the bacterial cellulose fermentation process is modified by the addition of vegetal stem cell to the culture medium and natural materials before the bacteria are inoculated. In vivo behavior using natural ECM for regenerative medicine is presented.
出处 《Journal of Biomaterials and Nanobiotechnology》 2015年第4期237-246,共10页 生物材料与纳米技术(英文)
关键词 BACTERIAL CELLULOSE (Nanoskin) NATURAL Nanocomposites REGENERATIVE Medicine Stem Cells Bacterial Cellulose (Nanoskin) Natural Nanocomposites Regenerative Medicine Stem Cells
  • 相关文献

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部