期刊文献+

Study of Pneumococcal Surface Protein, PspA, Incorporated in Poly(Vinyl Alcohol) Hydrogel Membranes

Study of Pneumococcal Surface Protein, PspA, Incorporated in Poly(Vinyl Alcohol) Hydrogel Membranes
下载PDF
导出
摘要 This study investigates poly(vinyl alcohol) (PVA) membranes as controlled release micro-matrices, which can be useful in therapeutic applications for optimizing the administration of drugs. Currently, the use of hydrogels is limited by protein size. This study investigates the delivery of PspA, a large protein of approximately 38 kD. Pneumococcal surface protein A (PspA) has been shown to provide protective immunity against pneumococcal infection and is considered as a pneumococcal vaccine. The protein release experiments demonstrated that from an initial pH 7.4, approximately 60% of PspA diffuse into a neutral environment with an initial burst and a declining rate reaching equilibrium. The results indicate that the protein was successfully incorporated and released from the membrane over time. The hydrogel and protein interaction is temporary, and the membrane system is ideal for protein drug delivery. The data confirm that the protein did not aggregate and was active after release. The protein release is promising and a step forward to develop microneedles to facilitate high molecular weight protein delivery as well as vaccine delivery. This study investigates poly(vinyl alcohol) (PVA) membranes as controlled release micro-matrices, which can be useful in therapeutic applications for optimizing the administration of drugs. Currently, the use of hydrogels is limited by protein size. This study investigates the delivery of PspA, a large protein of approximately 38 kD. Pneumococcal surface protein A (PspA) has been shown to provide protective immunity against pneumococcal infection and is considered as a pneumococcal vaccine. The protein release experiments demonstrated that from an initial pH 7.4, approximately 60% of PspA diffuse into a neutral environment with an initial burst and a declining rate reaching equilibrium. The results indicate that the protein was successfully incorporated and released from the membrane over time. The hydrogel and protein interaction is temporary, and the membrane system is ideal for protein drug delivery. The data confirm that the protein did not aggregate and was active after release. The protein release is promising and a step forward to develop microneedles to facilitate high molecular weight protein delivery as well as vaccine delivery.
出处 《Journal of Biomaterials and Nanobiotechnology》 2020年第1期67-81,共15页 生物材料与纳米技术(英文)
关键词 HYDROGEL Recombinant PSPA Drug Delivery Vaccine Poly(Vinyl Alcohol) (PVA) Membrane STREPTOCOCCUS PNEUMONIAE Hydrogel Recombinant PspA Drug Delivery Vaccine Poly(Vinyl Alcohol) (PVA) Membrane Streptococcus Pneumoniae
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部