摘要
The increase of the potash fertilizer dose in-duced a raise in efficiency influence of the ni-trogen fertilizer, optimisation of phosphorous fertilizer effect, enhancement of leaf protein production, expansion of assimilating surface and yield growth. In the period of yield forma-tion, the parameters of delayed fluorescence of chlorophyll (DF) of leaf wholly corresponded with key factors that had a dramatic influence on the effectiveness of yield formation. The maximum level of DF amplitude mostly de-pended on the activity of nitrogen metabolism and presumably on active PSII concentration changes per square unit. Half-decay time of this amplitude was predominantly identified by the level of carbohydrate metabolism in the overall plant system, including the quantity of its products and, therefore, mostly by correspon-dence with yield. This is a biological base trig-gering the use of DF parameters for system analyses of plant production process.
The increase of the potash fertilizer dose in-duced a raise in efficiency influence of the ni-trogen fertilizer, optimisation of phosphorous fertilizer effect, enhancement of leaf protein production, expansion of assimilating surface and yield growth. In the period of yield forma-tion, the parameters of delayed fluorescence of chlorophyll (DF) of leaf wholly corresponded with key factors that had a dramatic influence on the effectiveness of yield formation. The maximum level of DF amplitude mostly de-pended on the activity of nitrogen metabolism and presumably on active PSII concentration changes per square unit. Half-decay time of this amplitude was predominantly identified by the level of carbohydrate metabolism in the overall plant system, including the quantity of its products and, therefore, mostly by correspon-dence with yield. This is a biological base trig-gering the use of DF parameters for system analyses of plant production process.