期刊文献+

Effects of Selective Biotinylation on the Thermodynamic Stability of Human Serum Albumin

Effects of Selective Biotinylation on the Thermodynamic Stability of Human Serum Albumin
下载PDF
导出
摘要 Thermal denaturation and stability of two commercially available preparations of Human Serum Albumin (HSA), differing in their advertised level of purity, were investigated by differential scanning calorimetry (DSC). These protein samples were 99% pure HSA (termed HSA<sub>99</sub>) and 96% pure HSA (termed HSA<sub>96</sub>). According to the supplier, the 3% difference in purity between HSA<sub>96</sub> and HSA<sub>99</sub> is primarily attributed to the presence of globulins and fatty acids. Our primary aim was to investigate the utility of DSC in discerning changes in HSA that occur when the protein is specifically adducted, and determine how adduct formation manifests itself in HSA denaturation curves, or thermograms, measured by DSC. Effects of site specific covalent attachment of biotin (the adduct) on the thermodynamic stability of HSA were investigated. Each of the HSA preparations was modified by biotinylation targeting a single site, or multiple sites on the protein structure. Thermograms of both modified and unmodified HSA samples successfully demonstrated the ability of DSC to clearly discern the two HSA preparations and the presence or absence of covalent modifications. DSC thermogram analysis also provided thermodynamic characterization of the different HSA samples of the study, which provided insight into how the two forms of HSA respond to covalent modification with biotin. Consistent with published studies [1] HSA<sub>96</sub>, the preparation with contaminants that contain globulins and fatty acids seems to be comprised of two forms, HSA<sub>96-L</sub> and HSA<sub>96-H</sub>, with HSA<sub>96-L</sub> more stable than HSA<sub>99</sub>. The effect of multisite biotinylation is to stabilize HSA<sub>96-L</sub> and destabilize HSA<sub>96-H</sub>. Thermodynamic analysis suggests that the binding of ligands comprising the fatty acid and globulin-like contaminant contributes approximately 6.7 kcal/mol to the stability HSA<sub>96-L</sub>. Thermal denaturation and stability of two commercially available preparations of Human Serum Albumin (HSA), differing in their advertised level of purity, were investigated by differential scanning calorimetry (DSC). These protein samples were 99% pure HSA (termed HSA<sub>99</sub>) and 96% pure HSA (termed HSA<sub>96</sub>). According to the supplier, the 3% difference in purity between HSA<sub>96</sub> and HSA<sub>99</sub> is primarily attributed to the presence of globulins and fatty acids. Our primary aim was to investigate the utility of DSC in discerning changes in HSA that occur when the protein is specifically adducted, and determine how adduct formation manifests itself in HSA denaturation curves, or thermograms, measured by DSC. Effects of site specific covalent attachment of biotin (the adduct) on the thermodynamic stability of HSA were investigated. Each of the HSA preparations was modified by biotinylation targeting a single site, or multiple sites on the protein structure. Thermograms of both modified and unmodified HSA samples successfully demonstrated the ability of DSC to clearly discern the two HSA preparations and the presence or absence of covalent modifications. DSC thermogram analysis also provided thermodynamic characterization of the different HSA samples of the study, which provided insight into how the two forms of HSA respond to covalent modification with biotin. Consistent with published studies [1] HSA<sub>96</sub>, the preparation with contaminants that contain globulins and fatty acids seems to be comprised of two forms, HSA<sub>96-L</sub> and HSA<sub>96-H</sub>, with HSA<sub>96-L</sub> more stable than HSA<sub>99</sub>. The effect of multisite biotinylation is to stabilize HSA<sub>96-L</sub> and destabilize HSA<sub>96-H</sub>. Thermodynamic analysis suggests that the binding of ligands comprising the fatty acid and globulin-like contaminant contributes approximately 6.7 kcal/mol to the stability HSA<sub>96-L</sub>.
作者 Huyen Hoang Fidelis Manyanga Moshood K. Morakinyo Vincent Pinkert Ferdous Sarwary Daniel J. Fish Greg P. Brewood Albert S. Benight Huyen Hoang;Fidelis Manyanga;Moshood K. Morakinyo;Vincent Pinkert;Ferdous Sarwary;Daniel J. Fish;Greg P. Brewood;Albert S. Benight(Department of Chemistry, Portland State University, Portland, USA;Louisville Bioscience, Inc., Louisville, USA;Department of Chemistry and Physics, Salem State University, Salem, USA;Portland Technology Development, Intel Corporation, Hillsboro, USA;Department of Mathematics, Portland State University, Portland, USA;Department of Physics, Portland State University, Portland, USA)
出处 《Journal of Biophysical Chemistry》 2016年第1期9-29,共21页 生物物理化学(英文)
关键词 Human Serum Albumin (HSA) Differential Scanning Calorimetryl (DSC) Protein Thermodynamic Stability and Thermal Denaturation Human Serum Albumin (HSA) Differential Scanning Calorimetryl (DSC) Protein Thermodynamic Stability and Thermal Denaturation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部