期刊文献+

On Diffusive Confining a Galvanic Crystallization out of Molten Salts

On Diffusive Confining a Galvanic Crystallization out of Molten Salts
下载PDF
导出
摘要 The electron-energy band structure of electric Double Layer (DL) between a molten salt and metal electrode (an anode or cathode) is studied for the electrodepositing crystallization process when the width of DL metal part is less than the one in the molten salt. It is shown that just the molten-salt part of the double layer confines a rate of electrodepositing process. The reason of this is a neutralization of depositing ions into the molten-salt near the electrode and hence their diffusively confined motion in a density gradient field. It is important to minimize the electrodepositing potential for effective component crystallization out of the molten salt and its exchange process including selective extracting of salt components by their crystallization on electrodes of galvanic circuit. It is shown that this can be carried out by means of fine and controllable variation of reduction-oxidation (RedOx) potential of the non-stoichiometric salts. A possible application of a potentiometer for monitoring and managing the salt composition is considered. For this, one uses precise methods of electric-motion-force and coulometer titration by solid electrolyte(for example, M+–β ”–Al2O3) of the basic salt metal (M。) as a reduction agent in the molten-salt solution. The electron-energy band structure of electric Double Layer (DL) between a molten salt and metal electrode (an anode or cathode) is studied for the electrodepositing crystallization process when the width of DL metal part is less than the one in the molten salt. It is shown that just the molten-salt part of the double layer confines a rate of electrodepositing process. The reason of this is a neutralization of depositing ions into the molten-salt near the electrode and hence their diffusively confined motion in a density gradient field. It is important to minimize the electrodepositing potential for effective component crystallization out of the molten salt and its exchange process including selective extracting of salt components by their crystallization on electrodes of galvanic circuit. It is shown that this can be carried out by means of fine and controllable variation of reduction-oxidation (RedOx) potential of the non-stoichiometric salts. A possible application of a potentiometer for monitoring and managing the salt composition is considered. For this, one uses precise methods of electric-motion-force and coulometer titration by solid electrolyte(for example, M+–β ”–Al2O3) of the basic salt metal (M。) as a reduction agent in the molten-salt solution.
出处 《Journal of Crystallization Process and Technology》 2012年第4期146-151,共6页 结晶过程及技术期刊(英文)
关键词 MOLTEN SALT Galvanic CRYSTALLIZATION Metal ELECTRODE Electric Double Layer Diffusive Confine Molten Salt Galvanic Crystallization Metal Electrode Electric Double Layer Diffusive Confine
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部