摘要
A gravity droplet crossing a liquid-liquid interface is covered on the forefront with a film of the leaving liquid phase. The film thickness is not homogeneous over the droplet surface, and it reduces as the droplet penetrates the interface, particularly in the stretched area where it then ruptures. An expression for the film thickness in the stretched region is deduced from a force balance. The film rupture is expected to occur at a droplet position when the normal stress in the stretched film reaches the tensile strength of the liquid. By using some experimental data from literature the expression delivers 26 nm for the film thickness at rupture, while Burrill and Woods [1] obtained experimentally values between 30 nm and 50 nm.
A gravity droplet crossing a liquid-liquid interface is covered on the forefront with a film of the leaving liquid phase. The film thickness is not homogeneous over the droplet surface, and it reduces as the droplet penetrates the interface, particularly in the stretched area where it then ruptures. An expression for the film thickness in the stretched region is deduced from a force balance. The film rupture is expected to occur at a droplet position when the normal stress in the stretched film reaches the tensile strength of the liquid. By using some experimental data from literature the expression delivers 26 nm for the film thickness at rupture, while Burrill and Woods [1] obtained experimentally values between 30 nm and 50 nm.