期刊文献+

Microencapsulation of Essential Oils within Alginate: Formulation and <i>in Vitro</i>Evaluation of Antifungal Activity 被引量:6

Microencapsulation of Essential Oils within Alginate: Formulation and <i>in Vitro</i>Evaluation of Antifungal Activity
下载PDF
导出
摘要 Essential oils (EOs) are the volatile lipophilic components extracted from plants. Many EOs have demonstrated strong antimicrobial properties when tested in in vitro experiments. The commercial applications of these EOs require a suitable formulation constituted by biodegradable compounds that protect them from degradation and evaporation at the same time that allows for a sustained release. The objective of this study was therefore to reduce the rate of evaporation of the oil via microencapsulation. Alginate microspheres (AMSs) were prepared using emulsion extrusion method. The AMSs were hardened with a cross-linking agent, calcium chloride. The effects of the three variables: alginate concentration (0.5% - 8%), the amount of cross-linking agent (0.125% - 2%) and time of cross-linking (5 - 30 min.) on loading capacity and encapsulation efficiency (EE, %) were studied. The effect of the amount of cross-linker was significant on loading capacity (%) and EE (%). The AMSs under the optimized conditions provided loading capacity of 22% - 24% and EE of 90% - 94% based on type of EO. The antifungal activity of vapors of microencapsulated and non-microencapsulated oils were evaluated against two of pathogenic fungi species for stored grains: Aspergillus niger and Fusarium verticillioides. The optimized MSs were observed to have a sustained in vitro release profile (50% of the antifungal activity was maintained at the 8th day of the study). In conclusion, encapsulation in Ca-alginate microspheres may effectively reduce the evaporation rate of essential oils, thus?increase the potential antifungal activity. Essential oils (EOs) are the volatile lipophilic components extracted from plants. Many EOs have demonstrated strong antimicrobial properties when tested in in vitro experiments. The commercial applications of these EOs require a suitable formulation constituted by biodegradable compounds that protect them from degradation and evaporation at the same time that allows for a sustained release. The objective of this study was therefore to reduce the rate of evaporation of the oil via microencapsulation. Alginate microspheres (AMSs) were prepared using emulsion extrusion method. The AMSs were hardened with a cross-linking agent, calcium chloride. The effects of the three variables: alginate concentration (0.5% - 8%), the amount of cross-linking agent (0.125% - 2%) and time of cross-linking (5 - 30 min.) on loading capacity and encapsulation efficiency (EE, %) were studied. The effect of the amount of cross-linker was significant on loading capacity (%) and EE (%). The AMSs under the optimized conditions provided loading capacity of 22% - 24% and EE of 90% - 94% based on type of EO. The antifungal activity of vapors of microencapsulated and non-microencapsulated oils were evaluated against two of pathogenic fungi species for stored grains: Aspergillus niger and Fusarium verticillioides. The optimized MSs were observed to have a sustained in vitro release profile (50% of the antifungal activity was maintained at the 8th day of the study). In conclusion, encapsulation in Ca-alginate microspheres may effectively reduce the evaporation rate of essential oils, thus?increase the potential antifungal activity.
出处 《Journal of Encapsulation and Adsorption Sciences》 2013年第1期48-55,共8页 封装与吸附期刊(英文)
关键词 Essential OILS ALGINATE Microspheres Extrusion ANTIFUNGAL Activity Essential Oils Alginate Microspheres Extrusion Antifungal Activity
  • 相关文献

同被引文献116

引证文献6

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部