期刊文献+

Influence of Silicate Structure on the Low Temperature Synthesis of Belite Cement from Different Siliceous Raw Materials 被引量:2

Influence of Silicate Structure on the Low Temperature Synthesis of Belite Cement from Different Siliceous Raw Materials
下载PDF
导出
摘要 This paper studies the low temperature synthesis of β-C2S from mixture of lime, BaCl2 and siliceous raw material (white sand, metakaolin and dealuminated kaolin) with the ratio (Ca + Ba)/Si = 2. The Mixtures were hydrothermally treated in stainless steel capsule at 180°C for 5 hours and calcined at 750°C for 3 hours. Raw materials, hydrothermally treated and calcined mixtures were analyzed by FTIR, XRD, TGA/DTA and SEM techniques. The reactivity siliceous raw materials towards lime under hydrothermal treatment increase in the following order: sand, metakaolin, dealuminated kaolin. Because sand composes of quartz crystals, metakaolin composes of amorphous metakaolin structure while dealuminated kaolin composes from enriched amorphous silicate. Calcium aluminate and aluminosilicate hydrate were observed in case of metakaolin which contains appreciable amount of Al2O3. Dicalcium silicate crystallizes into β-C2S in the temperature range 590°C - 760°C. Finally, β-C2S transforms to α’-C2S in the temperature range 790°C - 860°C. There is no sign for the formation of γ-C2S. This proves that Ba2+ ions stabilized β-C2S and retards its transformation to γ-C2S because Ba2+ions replace some of calcium atoms in the structure of β-C2S. This paper studies the low temperature synthesis of β-C2S from mixture of lime, BaCl2 and siliceous raw material (white sand, metakaolin and dealuminated kaolin) with the ratio (Ca + Ba)/Si = 2. The Mixtures were hydrothermally treated in stainless steel capsule at 180°C for 5 hours and calcined at 750°C for 3 hours. Raw materials, hydrothermally treated and calcined mixtures were analyzed by FTIR, XRD, TGA/DTA and SEM techniques. The reactivity siliceous raw materials towards lime under hydrothermal treatment increase in the following order: sand, metakaolin, dealuminated kaolin. Because sand composes of quartz crystals, metakaolin composes of amorphous metakaolin structure while dealuminated kaolin composes from enriched amorphous silicate. Calcium aluminate and aluminosilicate hydrate were observed in case of metakaolin which contains appreciable amount of Al2O3. Dicalcium silicate crystallizes into β-C2S in the temperature range 590°C - 760°C. Finally, β-C2S transforms to α’-C2S in the temperature range 790°C - 860°C. There is no sign for the formation of γ-C2S. This proves that Ba2+ ions stabilized β-C2S and retards its transformation to γ-C2S because Ba2+ions replace some of calcium atoms in the structure of β-C2S.
作者 Ma Tantawy
机构地区 Chemistry Department
出处 《Journal of Materials Science and Chemical Engineering》 2015年第5期98-106,共9页 材料科学与化学工程(英文)
关键词 White SAND METAKAOLIN Dealumiated KAOLIN HYDROTHERMAL Treatment CALCINATION White Sand Metakaolin Dealumiated Kaolin Hydrothermal Treatment Calcination
  • 相关文献

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部