摘要
The dip-coating method has been used to prepare silica membrane. The gas flow rate relationship with the gauge pressure showed a Knudsen type of mechanism of gas transport. The flux was found to decrease with respect to temperature indicating non-activation mechanism of transport through the membrane. The order of the gas kinetic diameter with respect to the gas flow rate was He > Ar > CO2 > N2 confirming a molecular sieving mechanism of gas transport. The characterisation of the resin catalysts was carried out using scanning electron microscopy (SEM). The SEM morphology of the Amberlyst 16 resin catalysts showed a defect-free surface before esterification process. Amberlyst 15 catalyst exhibited some defect on the surface indicating a lower resistance to lactic acid and decomposition at higher temperature after the esterification process at 60°C. The order of the gas viscosity with respect to the gas flux was N2 > Ar > CO2 > He.
The dip-coating method has been used to prepare silica membrane. The gas flow rate relationship with the gauge pressure showed a Knudsen type of mechanism of gas transport. The flux was found to decrease with respect to temperature indicating non-activation mechanism of transport through the membrane. The order of the gas kinetic diameter with respect to the gas flow rate was He > Ar > CO2 > N2 confirming a molecular sieving mechanism of gas transport. The characterisation of the resin catalysts was carried out using scanning electron microscopy (SEM). The SEM morphology of the Amberlyst 16 resin catalysts showed a defect-free surface before esterification process. Amberlyst 15 catalyst exhibited some defect on the surface indicating a lower resistance to lactic acid and decomposition at higher temperature after the esterification process at 60°C. The order of the gas viscosity with respect to the gas flux was N2 > Ar > CO2 > He.