期刊文献+

Folding and Unfolding Simulations of a Three-Stranded Beta-Sheet Protein

Folding and Unfolding Simulations of a Three-Stranded Beta-Sheet Protein
下载PDF
导出
摘要 Understanding the folding processes of a protein into its three-dimensional native structure only with its amino-acid sequence information is a long-standing challenge in modern science. Two- hundred independent folding simulations (starting from non-native conformations) and two- hundred independent unfolding simulations (starting from the folded native structure) are performed using the united-residue force field and Metropolis Monte Carlo algorithm for betanova (three-stranded antiparallel beta-sheet protein). From these extensive computer simulations, two representative folding pathways and two representative unfolding pathways are obtained in the reaction coordinates such as the fraction of native contacts, the radius of gyration, and the root- mean-square deviation. The folding pathways and the unfolding pathways are similar each other. The largest deviation between the folding pathways and the unfolding pathways results from the root-mean-square deviation near the folded native structure. In general, unfolding computer simulations could capture the essentials of folding simulations. Understanding the folding processes of a protein into its three-dimensional native structure only with its amino-acid sequence information is a long-standing challenge in modern science. Two- hundred independent folding simulations (starting from non-native conformations) and two- hundred independent unfolding simulations (starting from the folded native structure) are performed using the united-residue force field and Metropolis Monte Carlo algorithm for betanova (three-stranded antiparallel beta-sheet protein). From these extensive computer simulations, two representative folding pathways and two representative unfolding pathways are obtained in the reaction coordinates such as the fraction of native contacts, the radius of gyration, and the root- mean-square deviation. The folding pathways and the unfolding pathways are similar each other. The largest deviation between the folding pathways and the unfolding pathways results from the root-mean-square deviation near the folded native structure. In general, unfolding computer simulations could capture the essentials of folding simulations.
作者 Seung-Yeon Kim Seung-Yeon Kim(School of Liberal Arts and Sciences, Korea National University of Transportation, Chungju, Republic of Korea)
出处 《Journal of Materials Science and Chemical Engineering》 2016年第1期13-17,共5页 材料科学与化学工程(英文)
关键词 PROTEIN FOLDING UNFOLDING Computer Simulation Protein Folding Unfolding Computer Simulation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部