期刊文献+

Forced Electrocodeposition of Silica Particles into Nickel Matrix by Horizontal Impinging Jet Cell

Forced Electrocodeposition of Silica Particles into Nickel Matrix by Horizontal Impinging Jet Cell
下载PDF
导出
摘要 The improvement of silica particle codeposition into a nickel electrodeposited composite coating (ECC) by a double face horizontal impinging jet cell (IJC) has been studied. The microstructure of coatings was examined by means of scanning electron microscopy performed in backscattered electron mode. The embedded particles distribution was shown to be the densest and the most uniform in laminar low flow mode and when the nozzle is at a distance of 5 mm close from the cathode. Excrescences observed on the composite surface are due to the wave-like flow of the jet on the cathode surface. The silica content of the nickel composite coatings was assessed by energy dispersive X-ray spectroscopy. The amount of particles embedded in the coating decreases with an increasing Reynolds number and as the nozzle-to-sample distance d becomes larger. A maximum rate of 4.43 wt% of silica has been successfully loaded at a distance d equal to 5 mm in the Ni-SiO2 composite coating. The improvement of silica particle codeposition into a nickel electrodeposited composite coating (ECC) by a double face horizontal impinging jet cell (IJC) has been studied. The microstructure of coatings was examined by means of scanning electron microscopy performed in backscattered electron mode. The embedded particles distribution was shown to be the densest and the most uniform in laminar low flow mode and when the nozzle is at a distance of 5 mm close from the cathode. Excrescences observed on the composite surface are due to the wave-like flow of the jet on the cathode surface. The silica content of the nickel composite coatings was assessed by energy dispersive X-ray spectroscopy. The amount of particles embedded in the coating decreases with an increasing Reynolds number and as the nozzle-to-sample distance d becomes larger. A maximum rate of 4.43 wt% of silica has been successfully loaded at a distance d equal to 5 mm in the Ni-SiO2 composite coating.
出处 《Journal of Materials Science and Chemical Engineering》 2017年第2期51-63,共13页 材料科学与化学工程(英文)
关键词 Electrocodeposition Nickel-Silica Composite Coatings IMPINGING Jet CELL HYDRODYNAMICS Electrocodeposition Nickel-Silica Composite Coatings Impinging Jet Cell Hydrodynamics
  • 相关文献

参考文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部