期刊文献+

Gas Purification and Quality Control of the End Gas Product 被引量:2

Gas Purification and Quality Control of the End Gas Product
下载PDF
导出
摘要 One of the main problems in the flow-through gas purification technologies is related with continuous control of the outlet gas purity. The information concerning purity of the produced gas is on high demand, e.g., for processing systems integrated with gas purifiers. The positive solution of this problem has become possible only now due to the appearance of reactive getters (reactants) that serve as highly efficient sinks for gas impurities and our sorption model of the processes, which take place in gas purifiers with these reactants. According to the given model the appearance of a single valued functional connection between the purity of the gas product and the duration of the treatment of the gas flow by the sorbing powder is typical for any system Me -Y, where Me is a powder reactant and Y is an impurity gas. This strict correlation provides the mathematical justification to a simple method of determining the concentration of the impurity in the gas flow at the exit from the gas purifier. This method comes down to measuring of the quantity of the purified gas by a gas flow meter, the readings of which are graduated in the units of gas concentration. One of the main problems in the flow-through gas purification technologies is related with continuous control of the outlet gas purity. The information concerning purity of the produced gas is on high demand, e.g., for processing systems integrated with gas purifiers. The positive solution of this problem has become possible only now due to the appearance of reactive getters (reactants) that serve as highly efficient sinks for gas impurities and our sorption model of the processes, which take place in gas purifiers with these reactants. According to the given model the appearance of a single valued functional connection between the purity of the gas product and the duration of the treatment of the gas flow by the sorbing powder is typical for any system Me -Y, where Me is a powder reactant and Y is an impurity gas. This strict correlation provides the mathematical justification to a simple method of determining the concentration of the impurity in the gas flow at the exit from the gas purifier. This method comes down to measuring of the quantity of the purified gas by a gas flow meter, the readings of which are graduated in the units of gas concentration.
出处 《Journal of Materials Science and Chemical Engineering》 2017年第8期44-58,共15页 材料科学与化学工程(英文)
关键词 GAS PURIFIER REACTANTS SORPTION Model Quality Control PURITY INDICATOR Gas Purifier Reactants Sorption Model Quality Control Purity Indicator
  • 相关文献

参考文献1

共引文献3

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部