期刊文献+

The Larger Grain and (111)-Orientation Planes of Poly-Ge Thin Film Grown on SiO<sub>2</sub>Substrate by Al-Induced Crystallization 被引量:1

The Larger Grain and (111)-Orientation Planes of Poly-Ge Thin Film Grown on SiO<sub>2</sub>Substrate by Al-Induced Crystallization
下载PDF
导出
摘要 Al-induced crystallization yields the larger grain and (111)-orientation planes of poly-Ge thin film grown on SiO2 substrate, the (111)-orientation planes of poly-Ge thin film grown on SiO2 substrate are very important for the superior performance electronics and solar cells. We discussed the 50 nm thickness poly-Ge thin film grown on SiO2 substrate by Alinduced crystallization focusing on the lower annealing temperature and the diffusion control interlayer between Ge and Al thin film. The (111)-orientation planes ratio of poly-Ge thin film achieve as high as 90% by merging the lower annealing temperature (325℃) and the GeOx diffusion control interlayer. Moreover, we find the lack of defects on poly-Ge thin film surface and the larger average grains size of poly-Ge thin film over 12 μm were demonstrated by electron backscatter diffraction measurement. Our results turn on the feasibility of fabricating electronic and optical device with poly-Ge thin film grown on SiO2 substrate. Al-induced crystallization yields the larger grain and (111)-orientation planes of poly-Ge thin film grown on SiO2 substrate, the (111)-orientation planes of poly-Ge thin film grown on SiO2 substrate are very important for the superior performance electronics and solar cells. We discussed the 50 nm thickness poly-Ge thin film grown on SiO2 substrate by Alinduced crystallization focusing on the lower annealing temperature and the diffusion control interlayer between Ge and Al thin film. The (111)-orientation planes ratio of poly-Ge thin film achieve as high as 90% by merging the lower annealing temperature (325℃) and the GeOx diffusion control interlayer. Moreover, we find the lack of defects on poly-Ge thin film surface and the larger average grains size of poly-Ge thin film over 12 μm were demonstrated by electron backscatter diffraction measurement. Our results turn on the feasibility of fabricating electronic and optical device with poly-Ge thin film grown on SiO2 substrate.
出处 《Journal of Materials Science and Chemical Engineering》 2018年第2期22-32,共11页 材料科学与化学工程(英文)
关键词 Al-Induced Crystallization Poly-Ge Thin Film Diffusion Control INTERLAYER Lower Annealing Temperature Al-Induced Crystallization Poly-Ge Thin Film Diffusion Control Interlayer Lower Annealing Temperature
  • 相关文献

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部