期刊文献+

Characterization of the Crystal Structure of Sesame Seed Cake Burned by Nd: YAG Laser

Characterization of the Crystal Structure of Sesame Seed Cake Burned by Nd: YAG Laser
下载PDF
导出
摘要 This paper reports obtaining of useful and high-value materials from sesame seed cake (SSC). For this purpose, SSC sample was burned for 30 s using Nd: YAG laser with output power 60 W. The products of this process and non-burned SSC were characterized by X-ray diffractometer (XRD), energy dispersive x-ray (EDX) and Fourier transform infrared (FTIR) so as to investigate its crystal structure and chemical components. XRD results of the SSC before burning process showed amorphous silica, rhombohedral phase of carbon, monoclinic phase of aluminum chloride, the hexagonal phase of moissanite-4H, (yellow, black) and hexagonal phase of graphite-2H, C (black). While the results of the burned SSC sample showed that the burning process using the power of Nd: YAG laser cased in appearing of crystalline hexagonal phase for silica and Carbon Nitride and converting the rhombohedral phase of Carbon into hexagonal phase. FTIR showed a number of absorbance peaks assigned to silica. This paper reports obtaining of useful and high-value materials from sesame seed cake (SSC). For this purpose, SSC sample was burned for 30 s using Nd: YAG laser with output power 60 W. The products of this process and non-burned SSC were characterized by X-ray diffractometer (XRD), energy dispersive x-ray (EDX) and Fourier transform infrared (FTIR) so as to investigate its crystal structure and chemical components. XRD results of the SSC before burning process showed amorphous silica, rhombohedral phase of carbon, monoclinic phase of aluminum chloride, the hexagonal phase of moissanite-4H, (yellow, black) and hexagonal phase of graphite-2H, C (black). While the results of the burned SSC sample showed that the burning process using the power of Nd: YAG laser cased in appearing of crystalline hexagonal phase for silica and Carbon Nitride and converting the rhombohedral phase of Carbon into hexagonal phase. FTIR showed a number of absorbance peaks assigned to silica.
出处 《Journal of Materials Science and Chemical Engineering》 2018年第4期121-131,共11页 材料科学与化学工程(英文)
关键词 Crystal Structure FTIR HEXAGONAL Carbon Laser-Based Combustion SESAME SEED CAKE SESAME Oil CAKE SILICA XRD Crystal Structure FTIR Hexagonal Carbon Laser-Based Combustion Sesame Seed Cake Sesame Oil Cake Silica XRD
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部