摘要
In this study, the synthesis and spectroelectrochemical analysis of hybrid materials containing poly-o-methoxyaniline/porous V2O5, poly(ethylene) oxide/ porous V2O5 and poly-o-methoxyaniline/poly(ethylene) oxide/porous V2O5, which have high potential for applications in batteries and electronics, is reported. The hybrid materials were obtained by intercalation of the polymers into the porous V2O5 matrix. These new compounds were characterized using dc conductivity, and, for spectroelectrochemical studies, ultraviolet visible (UV-vis) spectroscopy as well as cyclic voltammetry were used. The optical band gap values of the hybrid materials were estimated using Tauc plot. The introduction of organic materials into the inorganic species resulted in the reduction of VV ions to VIV, increasing the dc conductivity and affecting the spectroelectrochemical properties of the samples.
In this study, the synthesis and spectroelectrochemical analysis of hybrid materials containing poly-o-methoxyaniline/porous V2O5, poly(ethylene) oxide/ porous V2O5 and poly-o-methoxyaniline/poly(ethylene) oxide/porous V2O5, which have high potential for applications in batteries and electronics, is reported. The hybrid materials were obtained by intercalation of the polymers into the porous V2O5 matrix. These new compounds were characterized using dc conductivity, and, for spectroelectrochemical studies, ultraviolet visible (UV-vis) spectroscopy as well as cyclic voltammetry were used. The optical band gap values of the hybrid materials were estimated using Tauc plot. The introduction of organic materials into the inorganic species resulted in the reduction of VV ions to VIV, increasing the dc conductivity and affecting the spectroelectrochemical properties of the samples.