摘要
The sacrificial polymeric template usually used in lithographic methods could be replaced by crystalline materials such as ionic salts which, in some special conditions, can form arrays of single crystals. Atomic force microscopy investigations performed on such samples show their regularity and nanometric thickness. They can serve as a part of an ionic/molecular crystal grid or as mask in crystal lithography. Alternating the polarity degree of the employed solvents/dispersing media by matching materials qualities, we fabricated a sodium chromate and sulphur crystalline net, iron oxide nanoparticle grid and a sulphur single crystal array. The lack of any expensive/sophisticated technology in the production process of final devices makes this approach attractive.
The sacrificial polymeric template usually used in lithographic methods could be replaced by crystalline materials such as ionic salts which, in some special conditions, can form arrays of single crystals. Atomic force microscopy investigations performed on such samples show their regularity and nanometric thickness. They can serve as a part of an ionic/molecular crystal grid or as mask in crystal lithography. Alternating the polarity degree of the employed solvents/dispersing media by matching materials qualities, we fabricated a sodium chromate and sulphur crystalline net, iron oxide nanoparticle grid and a sulphur single crystal array. The lack of any expensive/sophisticated technology in the production process of final devices makes this approach attractive.