期刊文献+

Preparation of Micron Co<sub>3</sub>O<sub>4</sub>by Liquid-Phase Precipitation

Preparation of Micron Co<sub>3</sub>O<sub>4</sub>by Liquid-Phase Precipitation
下载PDF
导出
摘要 Co3O4 powder has a wide range of applications in the fields of catalysts, magnetic materials and electrochemistry. Especially after the 1990s, the demand for lithium ion battery industry has grown tremendously. The traditional wet preparation of Co3O4 powder cannot meet the requirements of the battery industry. Exploring suitable methods and theories for controlling particle size and morphology is of great significance for the preparation of battery-grade Co3O4 powder. CoCl2 was used as the cobalt source, NH4HCO3 was used as the precipitant, and the precursor was prepared and further calcined to obtain Co3O4 powder. The results show that the molar ratio is the main factor affecting the precursor phase in the preparation of Co3O4 in CoCl2-NH4HCO3 system. The suitable process conditions for the system are a molar ratio of NH4HCO3 to CoCl2 of 4.5:1, a concentration of CoCl2 of 13 g/L, a reaction temperature of 600C, and a reaction time of 10 hours. The median diameter of Co3O4 prepared by the reaction conditions is about 9 μm. Co3O4 powder has a wide range of applications in the fields of catalysts, magnetic materials and electrochemistry. Especially after the 1990s, the demand for lithium ion battery industry has grown tremendously. The traditional wet preparation of Co3O4 powder cannot meet the requirements of the battery industry. Exploring suitable methods and theories for controlling particle size and morphology is of great significance for the preparation of battery-grade Co3O4 powder. CoCl2 was used as the cobalt source, NH4HCO3 was used as the precipitant, and the precursor was prepared and further calcined to obtain Co3O4 powder. The results show that the molar ratio is the main factor affecting the precursor phase in the preparation of Co3O4 in CoCl2-NH4HCO3 system. The suitable process conditions for the system are a molar ratio of NH4HCO3 to CoCl2 of 4.5:1, a concentration of CoCl2 of 13 g/L, a reaction temperature of 600C, and a reaction time of 10 hours. The median diameter of Co3O4 prepared by the reaction conditions is about 9 μm.
作者 Yi Peng
出处 《Journal of Materials Science and Chemical Engineering》 2019年第12期29-38,共10页 材料科学与化学工程(英文)
关键词 MICRON CO3O4 PARTICLE Size Control Liquid Phase PRECIPITATION Micron Co3O4 Particle Size Control Liquid Phase Precipitation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部