期刊文献+

Effect of Mg Addition on the Structure and Properties of Al-4.5 Cu-3.4 Fe <i>In-Situ</i>Cast Composite

Effect of Mg Addition on the Structure and Properties of Al-4.5 Cu-3.4 Fe <i>In-Situ</i>Cast Composite
下载PDF
导出
摘要 Ternary Al-4.5 (wt%) Cu-3.4 (wt%) Fe in-situ composite was prepared at 1100°C by conventional casting method. However, this particular alloy contains larger needle-shaped intermetallics of Al3Fe phase. These exert adverse effect on the mechanical properties of the alloys. The larger shape and uneven orientation of the intermetallic were found to be responsible for the degradation of properties. The main purpose of this study was to modify the geometry of those needles by adding magnesium (Mg) as a fourth material. A series of alloys were prepared by adding 4, 6, 8, 10, wt% Mg in Al-4.5 (wt%) Cu-3.4 (wt%) Fe alloy. Microstructures were observed by optical microscopy. Mechanical properties like ultimate tensile strength, % elongation, % area reduction, hardness and wear test were determined. The study revealed that Mg transformed the needles of Al3Fe into globular shape which gave the alloys better mechanical properties. Ternary Al-4.5 (wt%) Cu-3.4 (wt%) Fe in-situ composite was prepared at 1100°C by conventional casting method. However, this particular alloy contains larger needle-shaped intermetallics of Al3Fe phase. These exert adverse effect on the mechanical properties of the alloys. The larger shape and uneven orientation of the intermetallic were found to be responsible for the degradation of properties. The main purpose of this study was to modify the geometry of those needles by adding magnesium (Mg) as a fourth material. A series of alloys were prepared by adding 4, 6, 8, 10, wt% Mg in Al-4.5 (wt%) Cu-3.4 (wt%) Fe alloy. Microstructures were observed by optical microscopy. Mechanical properties like ultimate tensile strength, % elongation, % area reduction, hardness and wear test were determined. The study revealed that Mg transformed the needles of Al3Fe into globular shape which gave the alloys better mechanical properties.
出处 《Journal of Materials Science and Chemical Engineering》 2020年第3期66-73,共8页 材料科学与化学工程(英文)
关键词 Metal Matrix Composites (MMCs) Intermetallic Compounds AL-CU-FE Alloy IN-SITU COMPOSITE Mg ADDITION Metal Matrix Composites (MMCs) Intermetallic Compounds Al-Cu-Fe Alloy In-Situ Composite Mg Addition
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部