期刊文献+

Theoretical Analysis of a Shell and Tubes Condenser with R134a Working Refrigerant and Water-Based Oxide of Aluminum Nanofluid (Al<sub>2</sub>O<sub>3</sub>) 被引量:1

Theoretical Analysis of a Shell and Tubes Condenser with R134a Working Refrigerant and Water-Based Oxide of Aluminum Nanofluid (Al<sub>2</sub>O<sub>3</sub>)
下载PDF
导出
摘要 The article analyzes a shell and tube type condenser’s thermal performance using concepts of efficiency and effectiveness. Freon 134a is used as a coolant flowing through the shell. Water or water-based aluminum oxide nanoparticles are at relatively low saturation pressure in the tube. The condenser consists of 36 tubes divided into three central regions for analysis: superheated steam, saturated steam, and subcooled liquid. The three regions contain four tubes with three steps each, that is, 12 tubes. Region I, superheated steam, includes three horizontal baffles. Profiles of temperature, efficiency, and effectiveness are presented graphically for the three regions, with fixed refrigerant flow equal to 0.20 kg/s and fluid flow rate in the tube ranging from 0.05 kg/s to 0.40 kg/s. The experimental result for vapor pressure equal to 1.2 MPa and water flow equal to 0.41 kg/s was used as one of the references for the model’s physical compatibility. The article analyzes a shell and tube type condenser’s thermal performance using concepts of efficiency and effectiveness. Freon 134a is used as a coolant flowing through the shell. Water or water-based aluminum oxide nanoparticles are at relatively low saturation pressure in the tube. The condenser consists of 36 tubes divided into three central regions for analysis: superheated steam, saturated steam, and subcooled liquid. The three regions contain four tubes with three steps each, that is, 12 tubes. Region I, superheated steam, includes three horizontal baffles. Profiles of temperature, efficiency, and effectiveness are presented graphically for the three regions, with fixed refrigerant flow equal to 0.20 kg/s and fluid flow rate in the tube ranging from 0.05 kg/s to 0.40 kg/s. The experimental result for vapor pressure equal to 1.2 MPa and water flow equal to 0.41 kg/s was used as one of the references for the model’s physical compatibility.
作者 Élcio Nogueira Élcio Nogueira(Department of Mechanical and Energy of State University of Rio de Janeiro, FAT/UERJ, Resende, Brazil)
出处 《Journal of Materials Science and Chemical Engineering》 2020年第11期1-22,共22页 材料科学与化学工程(英文)
关键词 Heat Exchanger CONDENSER Shell and Tubes Freon 134a NANOFLUID Heat Exchanger Condenser Shell and Tubes Freon 134a Nanofluid
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部