期刊文献+

Shock Induced Chemical Reactions of Intermetallic Mixture of Nickel and Aluminum and Associated Transition States

Shock Induced Chemical Reactions of Intermetallic Mixture of Nickel and Aluminum and Associated Transition States
下载PDF
导出
摘要 In this paper, numerical simulation of shock-induced chemical reactions of intermetallic mixtures is discussed. Specifically, the paper focuses on intermetallic mixture of nickel and aluminum. To initiate the chemical reactions, the thermal input or the shockwave should supply the energy to take the reactants, mixture of nickel and aluminum, to the transition state. Thus, for any numerical simulation or analysis of the shock or thermally induced chemical reaction in a continuum scale or a meso scale, it is necessary to identify the transition state. The transition state for the intermetallic mixture of nickel and the aluminum is identified in this paper and a result of the numerical simulation of the shock-induced chemical reaction, in a continuum scale is presented. The numerical solutions clearly show the chemical reactions, release of heat energy, increase of the temperature and the formation of products, following the transition state and the resulting shock-induced chemical reaction of a binary intermetallic energetic mixture of nickel and aluminum. The studies also show that the collapse of porosity is a mechanism that takes the reactants to the transition state, in shock-induced chemical reactions of binary intermetallic mixtures. In this paper, numerical simulation of shock-induced chemical reactions of intermetallic mixtures is discussed. Specifically, the paper focuses on intermetallic mixture of nickel and aluminum. To initiate the chemical reactions, the thermal input or the shockwave should supply the energy to take the reactants, mixture of nickel and aluminum, to the transition state. Thus, for any numerical simulation or analysis of the shock or thermally induced chemical reaction in a continuum scale or a meso scale, it is necessary to identify the transition state. The transition state for the intermetallic mixture of nickel and the aluminum is identified in this paper and a result of the numerical simulation of the shock-induced chemical reaction, in a continuum scale is presented. The numerical solutions clearly show the chemical reactions, release of heat energy, increase of the temperature and the formation of products, following the transition state and the resulting shock-induced chemical reaction of a binary intermetallic energetic mixture of nickel and aluminum. The studies also show that the collapse of porosity is a mechanism that takes the reactants to the transition state, in shock-induced chemical reactions of binary intermetallic mixtures.
作者 Vindhya Narayanan Sathya Hanagud Vindhya Narayanan;Sathya Hanagud(Georgia Institute of Technology, Atlanta, GA, USA)
出处 《Journal of Materials Science and Chemical Engineering》 2021年第4期60-67,共8页 材料科学与化学工程(英文)
关键词 Transition State Shock Induced Chemical Reaction Void Collapse NIckel-Aluminum Energetic Mixture Transition State Shock Induced Chemical Reaction Void Collapse NIckel-Aluminum Energetic Mixture
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部