期刊文献+

Long-Term Activity of Thermoplastic Gel Electrolyte in a Photo-Electrochemical Assembly Involving Poly Bithiophene (PBTh) as Photoactive Working Electrode

Long-Term Activity of Thermoplastic Gel Electrolyte in a Photo-Electrochemical Assembly Involving Poly Bithiophene (PBTh) as Photoactive Working Electrode
下载PDF
导出
摘要 Evidence for the long period of a sustainable function of a thermoplastic gel electrolyte (TPGE) consists of polyethylene glycol (PEG)/I<sub>2</sub>/I<span style="color:#4f4f4f;"><sup>-</sup></span> in propylene carbonate (PC) was recorded. The studied photoactive assembly consists of PBTH/FTO/TPGE I<sub>2</sub>/I<span style="color:#4f4f4f;"><sup>-</sup></span>/Platinized FTO. The study showed that the assembly regenerates the expected photoelectrochemical (PEC) quantities such as photocurrent, and other dielectric properties with infrequent use through an elapsed period of 18 months. The behavior of PBTh/occluded with CdS was mentored during this period and showed a similar result. PEC studies indicated the presence of p-p type hole accumulations interface, evident from the initial sharp rise in photocurrent. The change of open circuit potential (d<i>V<sub>oc</sub></i>) indicates that the shortest electron lifetime is 100 ms. The behavioral outcome of the assemblies within the period of study refracts stability of the electrode and the long life cycle of the electrolyte. Evidence for the long period of a sustainable function of a thermoplastic gel electrolyte (TPGE) consists of polyethylene glycol (PEG)/I<sub>2</sub>/I<span style="color:#4f4f4f;"><sup>-</sup></span> in propylene carbonate (PC) was recorded. The studied photoactive assembly consists of PBTH/FTO/TPGE I<sub>2</sub>/I<span style="color:#4f4f4f;"><sup>-</sup></span>/Platinized FTO. The study showed that the assembly regenerates the expected photoelectrochemical (PEC) quantities such as photocurrent, and other dielectric properties with infrequent use through an elapsed period of 18 months. The behavior of PBTh/occluded with CdS was mentored during this period and showed a similar result. PEC studies indicated the presence of p-p type hole accumulations interface, evident from the initial sharp rise in photocurrent. The change of open circuit potential (d<i>V<sub>oc</sub></i>) indicates that the shortest electron lifetime is 100 ms. The behavioral outcome of the assemblies within the period of study refracts stability of the electrode and the long life cycle of the electrolyte.
作者 Kasem K. Kasem Kasem K. Kasem(School of Sciences, Indiana University Kokomo, Kokomo, USA)
机构地区 School of Sciences
出处 《Journal of Materials Science and Chemical Engineering》 2021年第6期1-11,共11页 材料科学与化学工程(英文)
关键词 SUSTAINABILITY Gel-Polymer ELECTROCHEMISTRY THERMOPLASTIC PHOTOACTIVITY Sustainability Gel-Polymer Electrochemistry Thermoplastic Photoactivity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部